5XÉçÇøÊÓƵ

Foundations of Software Systems (FoSS)

Vincent van Oostrom

Selected Publications

2023

  • Zantema, H., & van Oostrom, V. (n.d.). Correction: The paint pot problem and common multiples in monoids. Applicable Algebra in Engineering, Communication and Computing. doi:10.1007/s00200-023-00613-7
    Article. .
  • Zantema, H., & van Oostrom, V. (n.d.). The paint pot problem and common multiples in monoids. Applicable Algebra in Engineering, Communication and Computing. doi:10.1007/s00200-023-00606-6
    Article. .
  • van Oostrom, V. (n.d.). On Causal Equivalence by Tracing in String Rewriting. Electronic Proceedings in Theoretical Computer Science, 377, 27-43. doi:10.4204/eptcs.377.2
    Article. .
  • Oostrom, V. V. (2023). On Causal Equivalence by Tracing in String Rewriting. Retrieved from http://dx.doi.org/10.4204/EPTCS.377.2
    Preprint.

2021

  • van Oostrom, V. (2024, July 17). Z; Syntax-Free Developments. In 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021) Vol. 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021) (pp. pages). Buenos Aires (Virtual): Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.FSCD.2021.24
    Conference publication. .

2019

  • Hirokawa, N., Nagele, J., van Oostrom, V., & Oyamaguchi, M. (2019). Confluence by Critical Pair Analysis Revisited. In Lecture Notes in Computer Science (pp. 319-336). Springer International Publishing. doi:10.1007/978-3-030-29436-6_19
    Chapter. .
  • Hirokawa, N., Nagele, J., Oostrom, V. V., & Oyamaguchi, M. (2019). Confluence by Critical Pair Analysis Revisited (Extended Version). Retrieved from http://arxiv.org/abs/1905.11733v2
    Preprint.

2017

  • Hirokawa, N., Nagele, J., Oostrom, V. V., & Oyamaguchi, M. (2017). Critical Peaks Redefined - $Φ\sqcup Ψ= \top$. Retrieved from http://arxiv.org/abs/1708.07877v1
    Preprint.

2016

  • Nagele, J., Oostrom, V. V., & Sternagel, C. (2016). A Short Mechanized Proof of the Church-Rosser Theorem by the Z-property for the $λβ$-calculus in Nominal Isabelle. Retrieved from http://arxiv.org/abs/1609.03139v1
    Preprint.

2015

  • Grabmayer, C., & van Oostrom, V. (n.d.). Nested Term Graphs (Work In Progress). Electronic Proceedings in Theoretical Computer Science, 183, 48-65. doi:10.4204/eptcs.183.4
    Article. .
  • Felgenhauer, B., Middeldorp, A., Zankl, H., & Van Oostrom, V. (2015). Layer Systems for Proving Confluence. ACM Transactions on Computational Logic, 16(2), 1-32. doi:10.1145/2710017
    Article. .

2014

  • Endrullis, J., Grabmayer, C., Hendriks, D., Klop, J. W., & van Oostrom, V. (n.d.). Infinitary Term Rewriting for Weakly Orthogonal Systems: Properties and Counterexamples. Logical Methods in Computer Science, Volume 10, Issue 2. doi:10.2168/lmcs-10(2:7)2014
    Article. .
  • Grabmayer, C., & Oostrom, V. V. (2014). Nested Term Graphs (Work In Progress). Retrieved from http://dx.doi.org/10.4204/EPTCS.183.4
    Preprint.
  • Felgenhauer, B., Middeldorp, A., Zankl, H., & Oostrom, V. V. (2014). Layer Systems for Proving Confluence. Retrieved from http://dx.doi.org/10.1145/2710017
    Preprint.
  • Endrullis, J., Grabmayer, C., Hendriks, D., Klop, J. W., & Oostrom, V. V. (2014). Infinitary Term Rewriting for Weakly Orthogonal Systems: Properties and Counterexamples. Retrieved from http://dx.doi.org/10.2168/LMCS-10(2:7)2014
    Preprint.

2011

  • GRABMAYER, C., LEO, J., VAN OOSTROM, V., & VISSER, A. (2011). ON THE TERMINATION OF RUSSELL’S DESCRIPTION ELIMINATION ALGORITHM. The Review of Symbolic Logic, 4(3), 367-393. doi:10.1017/s1755020310000286
    Article. .
  • Endrullis, J., Grabmayer, C., Klop, J. W., & van Oostrom, V. (2011). On equal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>μ</mml:mi></mml:math>-terms. Theoretical Computer Science, 412(28), 3175-3202. doi:10.1016/j.tcs.2011.04.011
    Article. .

2009

  • Jouannaud, J. -P., & van Oostrom, V. (2009). Diagrammatic Confluence and Completion. In Lecture Notes in Computer Science (pp. 212-222). Springer Berlin Heidelberg. doi:10.1007/978-3-642-02930-1_18
    Chapter. .

2008

  • DEHORNOY, P., & VAN OOSTROM, V. (2008). Using groups for investigating rewrite systems. Mathematical Structures in Computer Science, 18(06), 1133. doi:10.1017/s0960129508007160
    Article. .
  • Klop, J. W., van Oostrom, V., & de Vrijer, R. (2008). Lambda calculus with patterns. Theoretical Computer Science, 398(1-3), 16-31. doi:10.1016/j.tcs.2008.01.019
    Article. .
  • van Oostrom, V. (2008). Confluence by Decreasing Diagrams. In Lecture Notes in Computer Science (pp. 306-320). Springer Berlin Heidelberg. doi:10.1007/978-3-540-70590-1_21
    Chapter. .
  • van Oostrom, V. (2008). Modularity of Confluence. In Lecture Notes in Computer Science (pp. 348-363). Springer Berlin Heidelberg. doi:10.1007/978-3-540-71070-7_31
    Chapter. .

2007

  • van Oostrom, V. (2007). Random Descent. In Lecture Notes in Computer Science (pp. 314-328). Springer Berlin Heidelberg. doi:10.1007/978-3-540-73449-9_24
    Chapter. .
  • Klop, J. W., van Oostrom, V., & van Raamsdonk, F. (2007). Reduction Strategies and Acyclicity. In Lecture Notes in Computer Science (pp. 89-112). Springer Berlin Heidelberg. doi:10.1007/978-3-540-73147-4_5
    Chapter. .

2006

  • Klop, J. W., van Oostrom, V., & de Vrijer, R. (2006). Iterative Lexicographic Path Orders. In Lecture Notes in Computer Science (pp. 541-554). Springer Berlin Heidelberg. doi:10.1007/11780274_28
    Chapter. .

2005

  • Oostrom, V., & Raamsdonk, F. (1994). Comparing combinatory reduction systems and higher-order rewrite systems. In Lecture Notes in Computer Science (pp. 276-304). Springer Berlin Heidelberg. doi:10.1007/3-540-58233-9_13
    Chapter. .
  • Oostrom, V., & Raamsdonk, F. (1994). Weak orthogonality implies confluence: The higher-order case. In Lecture Notes in Computer Science (pp. 379-392). Springer Berlin Heidelberg. doi:10.1007/3-540-58140-5_35
    Chapter. .
  • Oostrom, V. (1997). Finite family developments. In Lecture Notes in Computer Science (pp. 308-322). Springer Berlin Heidelberg. doi:10.1007/3-540-62950-5_80
    Chapter. .
  • Oostrom, V. (1996). Higher-order families. In Lecture Notes in Computer Science (pp. 392-407). Springer Berlin Heidelberg. doi:10.1007/3-540-61464-8_67
    Chapter. .
  • Kennaway, R., van Oostrom, V., & de Vries, F. -J. (1996). Meaningless terms in rewriting. In Lecture Notes in Computer Science (pp. 254-268). Springer Berlin Heidelberg. doi:10.1007/3-540-61735-3_17
    Chapter. .
  • Oostrom, V. (1996). Development closed critical pairs. In Lecture Notes in Computer Science (pp. 185-200). Springer Berlin Heidelberg. doi:10.1007/3-540-61254-8_26
    Chapter. .
  • Oostrom, V., & Vink, E. P. (1994). Transition system specifications in stalk format with bisimulation as a congruence. In Lecture Notes in Computer Science (pp. 569-580). Springer Berlin Heidelberg. doi:10.1007/3-540-57785-8_172
    Chapter. .
  • Luttik, B., & van Oostrom, V. (2005). Decomposition orders—another generalisation of the fundamental theorem of arithmetic. Theoretical Computer Science, 335(2-3), 147-186. doi:10.1016/j.tcs.2004.11.019
    Article. .
  • Ketema, J., Klop, J. W., & van Oostrom, V. (2005). Vicious Circles in Orthogonal Term Rewriting Systems. Electronic Notes in Theoretical Computer Science, 124(2), 65-77. doi:10.1016/j.entcs.2004.11.020
    Article. .
  • Middeldorp, A., van Oostrom, V., van Raamsdonk, F., & de Vrijer, R. (Eds.) (2005). Processes, Terms and Cycles: Steps on the Road to Infinity. Springer Berlin Heidelberg. doi:10.1007/11601548
    Book. .

2004

  • van Oostrom, V. (Ed.) (2004). Rewriting Techniques and Applications. Springer Berlin Heidelberg. doi:10.1007/b98160
    Book. .
  • van Oostrom, V. (2004). Sub-Birkhoff. In Lecture Notes in Computer Science (pp. 180-195). Springer Berlin Heidelberg. doi:10.1007/978-3-540-24754-8_14
    Chapter. .

2003

  • Hendriks, D., & van Oostrom, V. (2003). â‹Œ. In Lecture Notes in Computer Science (pp. 136-150). Springer Berlin Heidelberg. doi:10.1007/978-3-540-45085-6_11
    Chapter. .

2002

  • van Oostrom, V., & de Vrijer, R. (2002). Four equivalent equivalences of reductions. Electronic Notes in Theoretical Computer Science, 70(6), 21-61. doi:10.1016/s1571-0661(04)80599-1
    Article. .

2001

  • Khasidashvili, Z., Ogawa, M., & van Oostrom, V. (2001). Uniform Normalisation beyond Orthogonality. In Lecture Notes in Computer Science (pp. 122-136). Springer Berlin Heidelberg. doi:10.1007/3-540-45127-7_11
    Chapter. .
  • Khasidashvili, Z., Ogawa, M., & van Oostrom, V. (2001). Perpetuality and Uniform Normalization in Orthogonal Rewrite Systems. Information and Computation, 164(1), 118-151. doi:10.1006/inco.2000.2888
    Article. .

2000

  • Klop, J. (2000). A geometric proof of confluence by decreasing diagrams. Journal of Logic and Computation, 10(3), 437-460. doi:10.1093/logcom/10.3.437
    Article. .

1999

  • van Oostrom, V. (1999). Normalisation in Weakly Orthogonal Rewriting. In Lecture Notes in Computer Science (pp. 60-74). Springer Berlin Heidelberg. doi:10.1007/3-540-48685-2_5
    Chapter. .

1998

  • Bezem, M., Klop, J. W., & van Oostrom, V. (1998). Diagram Techniques for Confluence. Information and Computation, 141(2), 172-204. doi:10.1006/inco.1997.2683
    Article. .

1997

  • Engelfriet, J., & van Oostrom, V. (1997). Logical Description of Context-free Graph Languages. Journal of Computer and System Sciences, 55(3), 489-503. doi:10.1006/jcss.1997.1510
    Article. .
  • van Oostrom, V. (1997). Developing developments. Theoretical Computer Science, 175(1), 159-181. doi:10.1016/s0304-3975(96)00173-9
    Article. .

1996

  • Engelfriet, J., & van Oostrom, V. (1996). Regular Description of Context-free Graph Languages. Journal of Computer and System Sciences, 53(3), 556-574. doi:10.1006/jcss.1996.0087
    Article. .

1995

  • Khasidashvili, Z., & van Oostrom, V. (1995). Context-sensitive Conditional Expression Reduction Systems. Electronic Notes in Theoretical Computer Science, 2, 167-176. doi:10.1016/s1571-0661(05)80193-8
    Article. .

1994

  • van Oostrom, V. (1994). Confluence by decreasing diagrams. Theoretical Computer Science, 126(2), 259-280. doi:10.1016/0304-3975(92)00023-k
    Article. .

1993

  • Klop, J. W., van Oostrom, V., & van Raamsdonk, F. (1993). Combinatory reduction systems: introduction and survey. Theoretical Computer Science, 121(1-2), 279-308. doi:10.1016/0304-3975(93)90091-7
    Article. .