
The11th W hiteH ousePapers

GraduateR esearch in Cognitive

andCom putingSciencesatSussex

Editor:

FabriceP.R etkowsky

CSR P 495

O ctober1998

ISSN 1350–3162

CognitiveScience

R esearch Papers

THEELEVENTH WHITEHOUSEPAPERS

CSRP495

Graduate Research

in Cognitive and ComputingSciences

at Sussex

October 1998

Preface

At the Isle of Thorns (a small village situated not far from Haywards Heath), stand a few white buildings.

These buildings, which sometimes act as Sussex University’s conference centre, are most of the time

used as a playground by rabbits. However, every year, they are disturbed by a congregation of COGS

research students. In accordance with this time-honoured tradition, 1998 saw the 11th Isle of Thorns

workshop, where COGS students gathered to present their work, share some ideas, and spend a lot of

time socialising.

The White House Papers are a conclusion to this year’s workshop. You will find here some articles,

as well as some shorter papers, written by PhD students in the last few months. The aim is to show which

domains we are interested in, and to give a rough idea to new students of what’s to come.

We would like to thank Matthew Hennessy and the COGS Graduate Research Centre for funding

the IoT workshop, as well as all the PhD students who contributed to these White House Papers, but

particularly John Halloran for being the Post-Graduate Representative in Cogs, and organizing the Isle

Of Thorns workshop.

Fabrice Retkowsky

To the 37, who Don’t Do what they’re Told

Contents

Hilan Bensusan

Odd bites into bananas don’t make you blind

Learning about simplicity and attribute addition . 1

StephanCollishaw

Configurational and featural processing:

Two routes to the recognition of faces ? . 15

Ann Light

From an Encyclopedia to a Teaching Space:

Using the Web in Schools . 18

Nuno Otero

3D Interactive Learning Environment . 23

Fabrice Retkowsky

Developing an experiment workbench

to study software reuse from a cognitive perspective . 40

Pablo Romero

Structural Knowledge in Prolog . 55

Hanson Schmidt-Cornelius

Tangent Point Tracking for the Driving Task . 69

Oliver Sharpe

Autopoiesis and Search . 79

Helen M. Startup & Graham C.L. Davey

The Effect of Mood on the Accessibility of Reasons

Why Positive or Negative Future Events Might Happen:

An Application of Availability Heuristics to Worry-based Pessimism 97

In: Retkowsky, F. P. (Ed.). (1998)

The 11th White House Papers: Cognitive Science Research Paper 495

School of Cognitive & Computing Sciences, University of Sussex

Odd bitesinto bananasdon’t make you blind

Learningabout simplicity and attribute addition

Hilan Bensusan
hilanb@cogs.susx.ac.uk

School of Cognitive & ComputingSciences

University of Sussex

Brighton

BN1 9QH

Once upon a time there was a little girl named Emma. She had never eaten banana in all her

life nor had she ever taken a journey on a train. On one occasion circumstances made necessary for

her to journey from New York to Pittsburgh alone. To relieve Emma’s anxiety her mother gave her

a large bag of bananas to eat on her railway journey west. At Emma’s first bite of her banana, the

The commonsense message from Emma’s story above is that successful induction requires experi-

ence in an environment. Emma hasn’t perform enough inductions to realise that in our environment odd

A problem descriptor generates values for the descriptor vector that is partly based on the working

representation of the problem and partly on the way the baseline learner generates the working

representation.

A bias pool manager classifies the training problems and applies the learners in the bias pool to the test

problems according to the meta-learning classifier. The training problems are classified in terms

of the most accurate bias or, in case of more than one bias with the same accuracy, in terms of

The following two trees have shape of 2 and 1 respectively.

d

b b

e

a a

f

c c

g

Homogeneity: The number of leaves divided by tree shape.

Balance of the tree: Given all the possible values Vi for p(L j), calculate G(Vi) as

G(Vi) = n�Vi

where n is the number of times Vi occurs in the set of all the leaves of the tree. The balance is then

measured by the following sum for all the x possible values for p(L j):

x

∑
j=0

G(V j) log2

problems reported in (Thrun et al., 1991). Given the original 6 attributes of the MONK problems, there

are 2432 possible classifications. For the current experiments, a number of classifications were chosen

and 10 problems, composed by training and a test sets, were constructed for each classification. The

meta-learning system was trained on an increasing number of problems and tested on different test sets

of problems.

2 Simplicity biases

The Occam razor is a popular and widespread bias: whenever possible, prefer simplest hypotheses.

In many contexts, both scientists and laymen would appeal to simplicity to decide between different

alternatives. One can ground the use of the razor on some sort

72

73

74

75

76

77

78

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480

entrencher
best

error-based pruning
no pruning

60

62

64

66

68

70

72

74

20 40 60 80 100 120 140 160 180 200 220 240 260

no pruning

4 Representation bias

The input representation of a problem essentially influences the overall learning performance (Craven

& Shavlik, 1995). Since learning biases deal in representations, a good amount of effort has been

put in finding appropriate strategies to improve the input description of a problem such that learning

becomes easier for a given bias. This effort is often conceived as part of the learning process since

a better input representation is expected to emerge from the interaction between the problem and the

learner (Matheus, 1989; Rendell & Cho, 1990; Wnek & Michalski, 1994). Learners that have the ability

to search for different input descriptions are often called constructive learners. Constructive induction

is now a common strategy to improve learning performance as one can easily see that the ability to

redescribe the problems often increase the VC dimension of a learning system 6.

In this paper, I shall consider different strategies for attribute addition, a form of constructive in-

duction. The fundamental element of a system that re-represents by adding new attributes is a set of

THE ENTRENCHER will then have to choose between the 5 constructors and the simple baseline

learner with no attribute added. If no new attribute is taken to be needed, the original representation of

the problem is considered to be such that none of the existing constructors could improve it.

Now, I shall refer to a problem as falling into the domain of expertise of a given constructor whenever

the new attributes built by the constructor promote a learning test accuracy of at least 95%. Of course, a

problem can fall into the domain of expertise of more than one constructor.

5 Learningto choose constructors

For these experiments, 100 MONKSPACE classifications designed to generate problems that would fall

into the domain of expertise of each constructor were generated. For each classification, 10 problems

with 124 training instances were generated. Performance of the constructors were measured in a test set

composed of the whole classified instance space (432 instances). The meta-learning system was trained

on an increasing number of problems and then tested on non-overlapping test sets of problems. The

performances was again compared to the best possible bias in the constructor pool. Here, as before, the

Y -axis is the accuracy in the test sets and the X

single instance might be enough. Meta-learning can therefore be seen as a force driving machine learning

from Emma’s naive conjecturing to the informed induction of Mill’s chemist .

10

Figure 3: Learning how much cost-complexity pruning is required

80

85

90

95

100

10 30 50 70 90 110 130 150 170 190 210 230 250 270

entrencher
best
avrg

References

Bensusan, H. (1998). God doesn’t always shave with Occam’s Razor – learning when and how to prune.

In Nédellec, C., & Rouveirol, C. (Eds.), Proceedigs of the 10th European Conference on Machine

Learning, pp. 119–124 Berlin. Springler.

Bensusan, H., & Williams, P. (1997). Learning to learn boolean tasks by decision tree descriptors. In

Someren, M. V., & Widmer, G. (Eds.), Poster Papers - 9th European Conference on Machine

Learning, pp. 1–11 Prague, Czech Republic.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. (1989). Learnability and the Vapnik-

Chervonenkis dimension. Journal of the ACM, 36(4), 929–965.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1987). Occam’s razor. Information

Processing Letters, 24(6), 377–380.

Chan, P., & Stolfo, S. (1993). Experiments on multistrategy

Murphy, P., & Pazzani, M. (1991). Id2of3: Constructive induction of m-of-n concepts for discriminators

in decision trees. In Proceedings of the Eight International Machine Learning Conference San

Mateo, CA, USA. Morgan Kaufmann.

Murphy, P., & Pazzani, M. (1994). Exploring the decision forest: An emprical imvestigation of occam’s

razor in decision tree induction. Journal of Artificial Intelligence Research, 1, 257–275.

Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical learning. Machine Learning,

5, 71–100.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA,

USA.

Quinlan, J. R., & Rivest, R. L. (1989). Inferring decision trees using the Minimum Description Length

Principle. Inform. Comput., 80(3), 227–248. (An early version appeared as MIT LCS Technical

report MIT/LCS/TM-339 (September 1987).).

2.2 Design

Both experiments consisted of seven conditions. These involved the recognition of faces which were:

� 1) Unmanipulated;

� 2) Blurred (Gaussian filter, r = 10 pixels);

� 3) Scrambled (re-arrangement of 5 horizontal face strips);

� 4) Inverted;

� 5) Scrambled and Inverted;

� 6) Blurred and Scrambled;

� 7) Blurred and Inverted.

A between subjects design was employed, and 20 subjects were randomly assigned to each condition.

Subjects were assigned to the same condition for both experiments, and the order in which subjects

completed the two tasks was counterbalanced.

2.3 Materials

For experiment 1, photographs of 22 celebrities, famous in the UK, served as targets. Distractor faces

were individually matched to target faces on the basis of age, hair colour and length, and quality of

image.

For experiment 2, two photographs were taken of 44 students at University College London. Half

the faces were randomly designated targets, and one (unmanipulated) photo was used in a study phase,

whilst the other (manipulated) was shown during the test phase. One photo of each of the remaining

faces was matched to each target face, and these served as distractors in the test phase.

2.4 Procedure

Faces in experiment 1 were presented to subjects one at a time in a random order. Subjects had to

decide whether each face was a celebrity or a non-entity. The accuracy of their choice as well as their

reaction time was recorded. In experiment 2, subjects first received a study phase, in which they viewed

unmanipulated versions of the target faces, one at a time for 3 seconds. The test phase of the experiment

paralleled that used in experiment 1.

3 Results

In: Retkowsky, F. P. (Ed.). (1998)

The 11th White House Papers: Cognitive Science Research Paper 495

School of Cognitive & Computing Sciences, University of Sussex

From an Encyclopedia to a TeachingSpace:

Usingthe Web in Schools

Ann Light

controlling scope: personal and group hypertexts, class networks, school intranet and, ultimately, a

public site. Inevitably, it would depend on the prevailing ethos of school and the image that senior staff

wanted to project.

So far, there has been little discussion of these issues, as there has been little mention of the benefits

of a hands-on approach. When the TES did publish an article on how schools might use websites, it was

entirely about promotion into the community (Flanagan 1998).

To conclude, there are many uses for the latest media in classrooms and, so far, this message has

not been as widely disseminated as the media themselves. One of the most exciting aspects, the chance

for students to participate in the creation of content has had the least attention of all. This paper presents

an argument for why this needs addressing. The creation of Media Studies as a subject area was a slow,

bottom-up response to the changing nature of society. Something more is needed this time.

22

In: Retkowsky, F. P. (Ed.). (1998)

The 11th White House Papers: Cognitive Science Research Paper 495

School of Cognitive & Computing Sciences, University of Sussex

3D Interactive LearningEnvironment

Nuno Otero
nunop@cogs.susx.ac.uk

School of Cognitive & ComputingSciences

University of Sussex

Brighton

BN1 9QH

1 Introduction

This text presents the proposal for a research programme to be developed on the application of virtual

environments to learning. It will establish the main goals of the study, integrate them on existing work

and propose the means to achieve such objectives.

In the second section we will present some of the most influential proposals on the classification of

graphical simulations along with some discussion upon a typology for computer graphics systems and its

usefulness. This topic is important since it will enable us to clarify the potential interactivity properties

that these kind of systems have.

Then we will reflect about the existing conceptual framework

stereoscopic, head-tracked displays, hand/body tracking and binaural sound. VR is an immersive, multi

sensory experience.” (pp. 3).

� Autonomy, refers to the reacting and acting capacity that the computational model have to events

and stimulus. This means that we could distinguish, for example, between a system that limits

itself to be read and another that alters his narration in accordance to user actions.

� Interaction, refers to ”...the degree of access to model parameters at runtime.” (pp. 127). Here

Zeltzer (1992) points out that the degrees of freedom exhibited by the system to user interaction

should be closely designed to meet task requirements.

� Presence, refers to a certain feeling emerging from our capacity to act in a world, which is closely

related, in graphical simulations, to the fidelity of the sensory input and out put data.

These three properties form a cube in which the different systems can be compared. For example: a

system with all levels high should be ”...fully autonomous agents and objects that act and react according

to the state of simulation, and that are equally responsive to the actions of the human participant.” (pp.

129). Zeltzer (1992) admits that he still finds difficult to rigorously quantify his proposed properties.

In fact, it seems that autonomy and presence are somewhat tricky concepts, the first because it seems

difficult to clarify strict boundaries between systems and their autonomy, especially if they are not react-

ing to the same stimulus; the second because the implicit notion of presence does not, clearly, take into

account the subjective dimension and possible different weightnings that different sensory cues have on

the feeling of presence that, additionally, might also vary from task to task.

�

�

�

�

�	

-

6

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(0,0,1) (0,1,1)

(0,1,0)(0,0,0)

(1,0,1) (1,1,1)

(1,0,0)
(1,1,0)

Presence

Autonomy

Interaction

Figure 1: Adapted from Zeltzer, 1992, pp 129.

Although difficult, a typology of graphical computer system

– technical fidelity, the degree of realistic rendering, colours, texture, motion etc, that raises

the question of their relative importance to different tasks and activities;

– representational familiarity, is the environment familiar?

– representational reality, is the world possible?

� Immediacy of control, the medium that the system uses, where a set of natural behaviours for

interface interaction corresponds to a more immediate system.

� Presence, our so many times referred, that the authors consider to require subjective and objective

measures.

In a careful analysis one can find common issues in some of the frameworks revised and a differ-

ent proposal should be towards integration. Kalawski (1993) refers the similarities between Ellis and

Zeltzer’s proposals. In fact, we can see that the differences established by Ellis about objects and actors

resembles Zeltzer’s concept of autonomy and that Zeltzer’s interaction implies the same issues has Ellis’s

dynamics. The difference resides on the fact that Ellis expands his concepts considering that virtual envi-

ronments are space metaphors and Zeltzer only pretends to cl

achieved. In particular, the sense of presence can be dimini

of information from one type of external representation to another, integrating and understanding the

relationships between them. For example, Rogers and Scaife (1997) consider the interplay of concrete

external representations and more abstract external representations in the comprehension of food webs.

Considering that a certain way of presenting information allows a better comprehension is not enough

(Scaife and Rogers, 1996).

Perhaps in a usability perspective, let us now look to the general tasks that a user can perform in a VE

and their cognitive requirements. This perspective can aid us to have a more fine grained understanding

of the activities that can be implemented in a VE and to realis

a more detailed cognitive analysis of graphical representations. The external cognition approach will be

discussed further ahead.

4.1 Typesof learningin VEs

Wickens and Baker (1995) consider four types of learning tha

Whitelock et al. (1996) consider that research on educational applications of VE’s has been con-

cerned with situation awareness or sensory-motor skills. There is no detailed research assessing the

relationship between the structure and form of a VE and the nature of the conceptual learning that takes

place. The authors also report Dede, Loftin, Salzman, Calhoun, Hoblit and Regian (1994) research on

empirical evaluation of the effectiveness of VE for fixing misconceptions, and consider this work valu-

able in the sense that it raises questions about the design of appropriate modalities for instructing the

domains or concepts.

There are several examples of VE systems that were built for conceptual learning, going from biology

dynamic and interactive representations. There is a clear n

interactivity it may be possible to provide children with a more effective way of understanding and

reconstructing the formal notations used to describe the concepts.” (Rogers and Scaife, 1997, pp.).

As we will refer these design principles can be used in conjunction with the ones that Scaife and

Rogers (1997) consider, at least, in the initial phases of the research. We think that these design principles

can be further specified and this will be one of the general goals of my work.

6 Linesof research

The analytical framework that I am constructing for my research involves:

� find good dimensions for the characterization of graphical simulations in order to understand what

are the key interactivity properties that these systems promote;

� consider the characteristics that Scaife and Rogers (1996) and Rogers and Scaife (1997) propose

for external representations as main framework for the analysis of ERs;

� use the design dimensions referred by Scaife and Rogers (1996) and Wickens (1992) and Wickens

and Baker (1995) for the raise of pragmatical design research;

� use the general tasks for VEs that Wickens and Baker (1995) pr

object is central to the understanding of the problem, but manipulating a certain object in the archaeo-

logical site may not have any informational gain, unless the recognition of the object is dependant on

its manipulation. It is even possible that for focusing the learner attention on the relevant information a

good design decision, for the archaeological site, would be to limit the possibilities of manipulating the

object, considering the alternative of presenting information by a simple click of an input device.

The second problem is more confined and less prone to multiple interpretations. It is a matter of

understanding how can we make more explicit the construction of an abstract representation through the

use of more explicit and perceptually driven representations. The main issue is to know how to build the

concrete representations and how to link them with the abstract modes.

It is clear, however, that the comparison between the two problems is not a conclusive one since I

can not guarantee the perfect correspondence of the two. This should be seen more as two case studies

with semi controlled variables.

6.2 The archaeology site exploration

The problem that I want to investigate through the archaeology site exploration is the usefulness of more

realistic simulations. More spefically, I want to understand the benefits of allowing a learner to explore

simulation of a certain location or environment that otherwise he would not be able to experience. In

some sense I am adressing the problem of what are the benefits of providing a concrete representation

with high levels of interactivity in a domain that people can have difficulties to experience. This also

considers the importance of providing levels of realism of the representation and realistic here must be

separated in two different issues:

� the pictorial realism or technical fidelity according to Whitelock et al. (1996);

� the interactivity realism, which should include the notion

when one considers complex domains. The complexity of the representation itself can be another prob-

lem since complex representations involve different cognitive properties in complex dynamics. So, it can

be the case that we can not avoid analysing complex perceptual problems, investigating, for example, if

the subject recognises the particular affordances of the representational object or if the object promotes

good or bad analogies.

6.4 The basic interactivitypropertiesin the VEs

The interactivity properties being investigated are:

� Visualizing - the benefits of the possibility to display information using an aditional dimension,

the 3D display. The use of 3D representations will have different goals in the problems. For the

archaeological site will be a way to promote realism but for the stereographic site it will help the

understanding of the problem states.

�

Mikropoulos, T. (1997). “Virtual environments in science e

Zhang, J. (1997). “The nature of external representations in problem solving.”

In: Retkowsky, F. P. (Ed.). (1998)

The 11th White House Papers: Cognitive Science Research Paper 495

School of Cognitive & Computing Sciences, University of Sussex

Developingan experiment workbench

to study software reuse froma cognitive perspective

Fabrice Retkowsky
fabricer@cogs.susx.ac.uk

School of Cognitive & ComputingSciences

University of Sussex

Brighton

BN1 9QH

Abstract Software reuse, as a promising programming technique, has led to many techno-

logical developments. But it also involves programmers’ cognition, and different theories

Figure 1: Experimental setup

3 The experiment

3.1 Design and materials

The experiment consisted in asking 12 Java beginners to program a simple class by reusing a class from

the Java API packages.

The Java API packages are standard packages of classes, written by Sun (the creators of Java).

4 Results

4.1 General remarks

The subjects all followed the same pattern of programming. First, they read and tried to understand

the problem description (it took 1 minute on average). Then, they looked for a component to reuse (3

minutes on average, though some subjects didn’t search at all), and finally did the programming. Only

two tests (out of 24) required more than 20 minutes.

Variable PhoneNumber PhoneNumberFormat

Total time 15m 56s 16m 55s

No. of pages when searching 6.08 pages 6.00 pages

No. of pages when programming 4.33 pages 3.25 pages

Quality of the code 3.29 /5 3.29 /5

Percentage of reusers 42 % 42 %

Suitability of the components 2.80 /5 1.60 /5

Quantity of reuse 2.50 /5 0.90 /5

Table 3: Results for the PhoneNumber and the PhoneNumberFormat tasks

more API pages while programming (probably because the programming was longer). The quality of

the resulting code is the same for both tasks, though the eval

Finally, the situation (2) produced better programs, mainly because (2) led to less reuse, and pro-

grams based on reuse were judged of lesser quality (see 4.5).

4.5 Expertise

Though the subjects were all beginners, there were initially two measurements of their expertise in Java:

Figure 4: Experts under-perform whether they reuse or not

probably read the descriptions more thoroughly when searching (as opposed to ‘beginners’ who just

browse), and that they knew how to use the API pages as a programming help.

5 Consequencesfor the Design

Once the subjects completed their two tasks, they were asked three open-ended questions about software

reuse:

� What are, in your opinion, the good aspects of the API pages as a reuse tool?

� What are, in your opinion, the bad aspects of the API pages as a software reuse tool?

� What should a perfect reuse tool look like?

The answers we collected can be found in Section 8. From these answers, and from the points we made

in the numerical analysis, we can draw some guidelines for the design of the reuse tool. Some of these

guidelines are already met by the initial design, some led to a few modifications.

Component description As we saw before, the reuse tool will be based on a set of modules. One

of the most important modules is the component description. What appeared from the experiment’s

Therefore we will base the first version of the component description module on the API documen-

tation. Yet the subjects suggested a few modifications:

� the class and package names should also be self-explanatory for beginners;

� it should have less technical terminology;

� it should also describe the code itself, and make it easily accessible (or even include it in the

description?), particularly for the ‘Understanding’ stage;

� it should include some examples;

� the packages should have a description as well;

� it should be less complicated, and shorter. This is easily feasible for the search stage: the experi-

ment proved subjects don’t use the ‘Methods’ level.

Navigation Since navigation is an important issue, we initially designed a complete and efficient set

of navigation tools. The subjects reminded us that the navigation should be very simple (i.e. like the

API, in HTML), and that:

� it should provide something so that users don’t get lost;

� the Search stage should actually have a search tool;

� it should always suggest alternative possibilities, so that the user does not get trapped in one not-

so-good solution;

� it should assist but not be intrusive.

As a consequence, it was decided to keep the navigation tools to a minimum, that is, a bar menu and a

small wizard that allows quick navigation between the four stages of reuse.

Structure Finally, the system should include some editing tools (to specialize and integrate the com-

ponents) and a built-in compiler (which was lacking from the experiment’s rudimentary reuse setup).

These were not planned at first, but will be included in the Specializaton and Integration stages.

6 The next stepsin the development of the tool

Since this experiment was completed, we have developed a mock-up of the user interface, and have had

it tested by a few possible users. The next step consists in designing the experiment toolkit, and then

programming the whole reuse workbench for real.

Once the system is completed, we will perform the experiment described in this paper again, but

using our tool instead of the rudimentary reuse system used here. This will have two aims:

� to test wether there are any major flaws in the design of the tool, or whether subjects have any

problem in using this kind of integrated tool that guides and assists them,

� and to know wether, in a simple configuration based on the API documentation, our system already

brings some kind of benefits.

Finally we will develop and compare some new sets of modules, for example to evaluate alternative

search techniques or documentation styles.

48

7 Appendix 1: The four tasks

7.1 Task A1

Write a PhoneNumber (PN) class by reusing a Java API class.

� A PN object will contain a telephone number, such as 1273275779

� It will be initialized using a String parameter, i.e. ”1273275779”

� It will have a toString() method which will give back a String such

as ”(1273) 275779”

You HAVE to reuse a Java API class to write this class.

7.2 Task A2

Here is the PhoneList class, which is used in an ‘Organizer’ program.

� It is basically a Vector of PhoneNumber objects

� The ‘Organizer’ program creates such PhoneLists, adds

PhoneNumbers to them, remove PhoneNumbers, and print

public class PhoneList

{

int MaxSize = 3;

PhoneNumber[] PhoneArray = new PhoneNumber[MaxSize];

int NbNumbers = 0;

// position 1 for PhoneArray[0]

PhoneList()

{

// creates two default numbers

PhoneNumber OneNumber = new PhoneNumber("1111111111");

PhoneNumber NineNumber = new PhoneNumber("9999999999");

this.addNumber(OneNumber);

this.addNumber(NineNumber);

this.printNumbers();

}

public boolean addNumber(PhoneNumber aNumber)

{

if (NbNumbers == MaxSize)

return false;

PhoneArray[NbNumbers] = aNumber;

NbNumbers++;

return true;

}

public boolean removeNumber(int position)

{

int i;

if (position > NbNumbers)

return false;

if (position == NbNumbers)

{

PhoneArray[position] = null;

NbNumbers--;

return true;

}

for (i=position; i<NbNumbers; i++)

PhoneArray[i-1] = PhoneArray[i];

NbNumbers--;

return true;

}

public void printNumbers()

{

int i;

if (NbNumbers == 0)

System.out.println("Empty List");

else

for (i=0; i<NbNumbers; i++)

System.out.println("Phone n. "+i+": "+PhoneArray[i].toString());

}

}

50

7.3 Task B1

Write a PhoneNumberFormat (PNF) class by reusing a Java API class.

� A PNF object will be able to format some strings

� It will for example format ”1273275779” into ”Brighton 275.779”

You HAVE to reuse a Java API class to write this class.

7.4 Task B2

import java.awt.*;

import java.applet.*;

public class PhoneWidget extends Applet

{

// The interface attributes

TextField input = new import1licimport

References

Burkhardt, J. M., & Detienne, F. (1994). La reutilisation en genie logiciel: une definition d’un cadre de

In: Retkowsky, F. P. (Ed.). (1998)

The 11th White House Papers: Cognitive Science Research Paper 495

School of Cognitive & Computing Sciences, University of Sussex

Structural Knowledge in Prolog

Pablo Romero�

juanr@cogs.susx.ac.uk

School of Cognitive & ComputingSciences

University of Sussex

Brighton

BN1 9QH

Abstract Knowledge about which parts of the program text are important to experienced

programmers might give clues about the nature of their structural knowledge and also might

be useful for the design of instructional systems for programming. There have been sev-

eral studies that have suggested that programmers of proced

There are several models of structural knowledge proposed for Prolog, however, these models are

not supported by psychological evidence. The experiment described in this paper tried to find out which

of program comprehension for Prolog that could characterise the flow of information and the temporal

ordering of information relationships of this process. The information relationships that they consid-

According to Brooks (1983) and Wiedenbeck (1986) programmers use beacons in the code to guide

their comprehension process. Davies (1993, 1994) suggested that these beacons can be considered as the

external analogue of the internally represented focal structures of the programmer’s structural knowl-

edge. This structural knowledge seems to be based in the idea of programming plans for the case of

procedural languages, but this might not be the case for Prolog. It could be that either the idea of a plan

has not counterpart in Prolog or the nature of plans is very different in this language.

3.2 Design

As mentioned before, this is not a hypothesis testing experi

/* do sort(-) */

do sort(SortedList):-

write(’enter sorting data’),

read(Key),

next value(Key,List),

bubblesort(List,SortedList).

next value(stop,[]).

next value(Key,[KeyjRest]):-

write(’enter sorting data’),

read(NewKey),

next value(NewKey,Rest).

bubblesort(SortedList,SortedList):-

verify sorted(SortedList).

bubblesort(List,SortedList):-

swap(List,List1),

bubblesort(List1,SortedList).

verify sorted([]).

verify sorted([X]).

verify sorted([X,YjRest]):-

X =< Y,

verify sorted([YjRest]).

swap([X,YjRest],[Y,XjRest]):-

X > Y.

swap([ZjRest],[ZjRest1]):-

swap(Rest,Rest1).

Figure 4: A version of the bubble sort program.

61

schemas related to data structure information. Finally, control-flow relations seem to be highlighted by

the points were recursion takes place.

Finally, as the experimental task includes the identification of the programs’ functionality, ‘dis-

guised’ versions of these programs have to be presented to the subjects. The criteria to ‘disguise’ these

programs is similar to the one used by Wiedenbeck (1986).

3.5 Procedure

The programmer subjects of this experiment performed three similar sessions. In each session, they

were given a hardcopy of the experimental program and were asked to study and memorise it. This

study period lasted 3 minutes. After this, the subjects were given 5 minutes to recall and write down

what they could remember of the program. Finally, these subjects used another period of 3 minutes to

write down a short explanation of what, according to them, the program does. These estimated times

were calculated following the same proportions as the times for the Wiedenbeck (1986) experiment.

The control group followed a slightly different procedure. They were not instructed to comprehend

but only to memorise the programs. Also, they were not asked to write down an explanation of what the

programs do.

As this was a pen and paper exercise, the collected data was the hand written account of both the

recollection and the explanation of the functionality of the program by the subjects. The recollection

account was analysed for each one of the proposed structures. For this analysis, the success rate of

recollection of each one of the structure’s instances was calculated for every subject. These instances

were considered as correctly recalled if the subject wrote a verbatim copy of the program code for

these segments; however, commas, dots, spaces and indentation were not considered in determining this

success of recollection. Also, if the subject recalled a procedure or variable with a different name but

was congruent through all the program with this modification, then the modification was not considered

as an error.

As mentioned before, structure instances comprise several elements which could be scattered through

several lines of the program. Only recollection of whole instances was considered as successful recol-

lection. If, for example, 90% of a particular instance was correctly written down, this instance was not

considered as correctly recalled. This strict criteria for the recollection of instances was considered as

appropriate because this study is interested in which structures, as chunks, are relevant to programmers.

The programmers’ account of the programs functionality was analysed in terms of its correctness.

Each of the programs performs several functions. The rainfall program, for example, reads a list of

values and obtains an average of these values and their maximum occurrence. The conversion program

validates a binary number and converts it to its decimal equivalent and the bubble sort program (figure

4) reads a list of values and performs a sort procedure over them. The subjects’ functionality description

was required to mention these major functions in order to be considered correct. For example, for the

rainfall program, statements equivalent to ’read a list of values’, ’obtains an average’ and ’obtains the

maximum’ were searched in the subjects’ description. Only if the three statements were identified the

account was considered correct. A similar criteria was used for the other two programs.

3.6 Results

The data of this experiment was analysed in three parts. The first part dealt with the success rate in iden-

tifying the function of the program by the two groups of programmers. The second part was concerned

with comparing the success percentages of recollection for the four structures taken into account. The

third part compared the percentage of recollection of each structure versus the percentage of recollection

of the program’s lines.

62

NON-PROGRAM
ERS

NOVICES

EXPERTS

P
E

R
C

E
N

T
A

G
E

 O
F

 R
E

C
O

LL
E

C
T

IO
N

.6

.5

.4

.3

.2

.1

0.0

Control-flow

Plans

Schemas

Techniques

NON-PROGRAM
M

ERS

NOVICES

EXPERTS

P
E

R
C

E
N

T
A

G
E

 O
F

 R
E

C
O

L
L

E
C

T
IO

N

.6

.5

.4

.3

.2

.1

0.0

Schemas

Other lines

Figure 7: Percentage of recollection for schemas and lines outside them

NON-PROGRAM
M

ERS

NOVICES

EXPERTS

P
E

R
C

E
N

T
A

G
E

 O
F

 R
E

C
O

LL
E

C
T

IO
N

.5

.4

.3

.2

.1

Plans

Other lines

Figure 8: Percentage of recollection for focal structures of plans and lines outside them

65

these comparisons for schemas and plans. The results for techniques and control-flow look very similar

to those for plans.

As direct comparisons between the groups of programmers had already been performed in the pre-

vious analysis, and also in order to avoid memorisation and size effects, the statistical analysis for this

third part of the study focused in the rate of change of the dif

when considering only the bubble sort program, which is similar to the sort program Wiedenbeck uses,

are basically the same to those obtained when taking into account the three programs. So it seems that

the key difference is the programming language considered.

It seems reasonable to think that in absence of any other information (neither internal nor external

documentation, and with variable and procedure names that do not help much to grasp the meaning of

the program) patterns of typical operations performed over familiar data structures can be very important

to start making sense of the code. This lack of documentation and meaningful variable names seems to

be an important issue for Prolog. Green, Bellamy, and Parker (1987) mention that Prolog, due to its

poor ‘role-expressiveness’, is specially sensitive to naming style (‘Salient variable names are almost the

structure relations are important at the beginning of the comprehension process for Prolog programmers.

The results of this experiment suggest that the mental model that Prolog programmers build at early

stages of the comprehension process is different from the one that programmers of procedural languages

construct. The former seems to be based on data structure relations while the latter, according to Wieden-

beck (1986) and Davies (1994), is related to functional information. This conclusion needs to be con-

firmed and its importance needs to be related to a more common programming task such as debugging

or program modification. Only when it is established that these findings are important for actual pro-

gramming tasks, this information could be applied to influence programming instruction and the design

of programming tools.

References

Bergantz, D., & Hassell, J. (1991). Information relationships in PROLOG programs: how do program-

mers comprehend functionality?. International Journal of Man-Machine Studies, 35, 313–328.

Bowles, A., & Brna, P. (1993). Programming plans and programming techniques. In Proceedings of the

AI-ED 93.

Brna, P., Bundy, A., Todd, T., Eisenstadt, M., Looi, C. K., & Pain, H. (1991). Prolog programming

techniques. Intructional Science, 20(2), 111–133.

Brooks, R. (1983). Towards a theory of the comprehension of computer programs. International Journal

of Man-Machine Studies, 18, 543–554.

Davies, S. P. (1990). The nature and development of programming plans. International Journal of

Man-Machine Studies, 40A, 423–442.

Davies, S. P. (1993). Models and theories of programming strategy. International Journal of Man-

Machine Studies, 39, 237–267.

Davies, S. P. (1994). Knowledge restructuring and the acquisition of programming expertise. Interna-

tional Journal of Human Computer Studies, 40, 703–726.

Gegg-Harrison, T. S. (1991). Learning Prolog in a schema-based environment. Instructional Science,

20, 173–192.

Gilmore, D., & Green, T. (1988). Programming plans and programming expertise. Quarterly Journal of

experimental psychology, 40a, 423–442.

Green, T. R. G., Bellamy, R. K. E., & Parker, J. M. (1987). Parsing and Gnisrap: a model of device use.

In Olson, G. M., Sheppard, S., & Soloway, E. (Eds.), Empirical Studies of programmers, second

workshop, pp. 132–146 Norwood,NJ. Ablex.

Ormerod, T. C., & Ball, L. J. (1996). An empirical evaluation of TEd, a techniques editor for Prolog

programming. In Empirical Studies of programmers, sixth workshop, pp. 147–162 Norwood,NJ.

Ablex.

Pennington, N. (1987). Stimulus structures and mental representations in expert comprehension of com-

puter programs. Cognitive Psychology, 19, 295–341.

Wiedenbeck, S. (1986). Beacons in computer program comprehension. International Journal of Man-

Machine Studies, 25, 697–709.

68

In: Retkowsky, F. P. (Ed.). (1998)

Figure 1: Tangent Point

scenarios to which the tracking algorithm is applied and analyses the effect of vibration to the tracking

performance. Finally, Section 4 concludes the paper and reflects the main results.

2 Method

The tracking mechanism introduced in this paper makes use of well established and reliable image

processing techniques and is designed to process image sequences with little scenery, such as shown in

the images from Figure 6 and 7. Image sequences containing more scenery, such as shown in Figure 8

can also be processed and produces reasonable results.

A tangent point forms the location, where the driver’s direction of gaze and the extreme inner point

of a road bend touch, but do not intersect. The road schematic in Figure 1 illustrates this. The black dot

represents an approaching car, and the grey dot represents the tangent point on the road bend. The dotted

arrow indicates the car’s current heading and the dashed line shows the driver’s direction of gaze, which

touches the tangent point.

a) b)

Figure 2: Smoothing and X-Axis Differencing

of neighbouring clusters are located very close to each othe

a) b) c) d)

Figure 3: Degree of Polynomial

a) b) c) d)

Figure 4: Tracking the Tangent Point

The extraction of potential tangent points from polynomials is a standard procedure and requires the

first derivative (gradient). The tangent point, as shown in F

T2

T3T1 T3

20

50m

52m

60m

Road

Car

40

TP

Heading

T1

T2

T3

T2

T1
TP

a) b) c)

Figure 5: The Tangent Point and Noise

a neighbouring range of at least two other tangent points in the history. A “neighbouring range”, in the

context of this program, means that at least two tangent poin

a) b) c)

d) e) f)

g) h) i)

Figure 7: Clustering of Tangent Points

3.3 Several Tangent Points

The sequence in Figure 8 shows that the tracking algorithm is not restricted to a set number of tangent

points. The road shows two tangent points which could be followed by the driver, the curve of the

a) b) c)

d) e) f)

Figure 8: Several Potential Tangent Points

the performance of tangent point tracking ability, under increasing camera vibration1.

The sequence consists of 158 continuous road images in which the program can detect 54 tangent

points correctly and 1 tangent point incorrectly, with no added camera vibration. The graph’s vertical

axis shows the amount of detected image regions, and the horizontal axis shows the amount of randomly

added horizontal camera vibration in units of pixel. The solid black dots indicate the amount of correctly

-

6

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

10

20

30

40

50

60

0

�

Pomerleau, D. (1995). Ralph: Rapidly adapting lateral position handler. Tech. rep., The Robotics

Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

Reinhardt, F., & Soeder, H. (1990). dtv-Atlas zur Mathematik Tafeln und Texte (7 edition)., Vol. 2.

Deutscher Taschenbuch Verlag.

Serafin, C. (1993). Preliminary examination of driver eye fixations on rural roads: Insight into safe

driving. Tech. rep., University of Michigan Transport Research Institute. UMTRI-93-29.

78

In: Retkowsky, F. P. (Ed.). (1998)

The 11th White House Papers: Cognitive Science Research Paper 495

School of Cognitive & Computing Sciences, University of Sussex

Autopoiesisand Search

Oliver Sharpe
olivers@cogs.susx.ac.uk

School of Cognitive & ComputingSciences

University of Sussex

Brighton

BN1 9QH

1 Introduction

known, including which solution is the best solution, and therefore if we are using the search space to find

a solution to a real problem it is no longer useful to search the space as we already know which solution

is the best. However, if we still ran the same search algorithm on this same problem, the dynamics of the

search algorithm would be the same. It has no way of knowing that we already know the best solution.

Therefore, if we want to make a definition of search processes that is based on the dynamics of the

etc.

t1 t2 t3t0

Figure 1: The structure of an active set trace.

the structure of a history trace is a list, or time series, of objects. The history trace also shows us the

order in which the search process performed work, as each evaluation is considered to be a unit of work.

Hence the history trace shows us the work dynamics of a search process.

A significant aspect of the search process that the history trace ignores is the set of evaluated points

from which the next candidate solution will be generated. Most search algorithms use hints gained from

previously evaluated points to help direct the future search direction. However, most do not remember

the whole of the history trace. Instead algorithms keep a sub

etc.

tn+1t1t0

. . . .

tn

Search

Non search

Time

P
er

si
st

an
ce

Figure 3: Distinguishing between search and non-search processes

Most important is that a random process will not fall into this definition, and neither will the process

of a hill-climber on a needle in a haystack landscape (or indeed flat landscape) and I am very happy

with that too. The dynamics of a hill-climber on a needle in a haystack landscape is what one might

call a termination dynamic where the active set trace is an ap

Time

P
er

si
st

an
ce

Q0

Q2
U2

...

Qn

Qn+1
...

QL

Q1

Q3

U3 U1

Un-1

Un

Un+1 UL-1

UL

U0

Figure 6: The formal structure of a Cyclically Persisting Relational Object (CPRO)

The model is as follows:

1.0

Time

P
er

si
st

an
ce

that it was ‘playing’ in an approximation of infinite resources. Once life had filled the space available,

introduced the persistence ratchet. The persistence ratch

The ultimate take home message of the paper is that if you want to study autopoiesis, you have to be

using a dynamical system that can support search processes, either by allowing exponential growth or

by using a search algorithm.

References

Davis, L. (Ed.). (1987).

In: Retkowsky, F. P. (Ed.). (1998)

The 11th White House Papers: Cognitive Science Research Paper 495

School of Cognitive & Computing Sciences, University of Sussex

The Effect of Mood on the Accessibility of Reasons

Why Positive or Negative Future EventsMight Happen:

An Application of AvailabilityHeuristicsto Worry-based Pessimism

Helen M. Startup & Graham C.L. Davey †

helenst@cogs.susx.ac.uk and grahamda@cogs.susx.ac.uk

School of Cognitive & ComputingSciences

University of Sussex

Brighton

BN1 9QH

Abstract Objectives

Because pathological worriers have unrealistically high expectations of negative events hap-

pening, the present study investigated the effect of mood on the generation of reasons why

future events might happen, and on judgements about the probability of such events hap-

pening.

Design

The study used a between-subjects design in which different groups of nonselected subjects

were given either negative, positive or neutral mood inductions.

Methods

1 Introduction

prevented than how it can be prevented.

In a test of the application of the availability heuristic to explaining worry-related pessimism about

future negative events, Macleod, Williams & Bekerian (1991) found that severe worriers tended to gener-

ate more reasons than nonworriers why putative future negative events might happen and fewer reasons

and complete some tasks. Finally, subjects were told that in order to alleviate boredom, a short break

would occur in the proceedings in which they would be asked to relax and listen to a short extract of

music.

Stage 1 All subjects were asked to complete the Penn State Worry Ques

3 Results

3.1 Penn State Worry Questionnaire (PSWQ)

Mean score on the PSWQ for all 60 subjects was 48.9 (sd 12.80). This compares with a mean score of

47.6 found in general unselected samples of American subjects (N=1323) (Molina & Borkovec, 1994),

and a mean score of 63.24 found in analogue clinical samples diagnosed as GAD by GAD-Q screening

(N=324) (Molina & Borkovec, 1994). There was no significant difference in PSWQ across the three

mood induction groups [F(2,59)=.15, p=.85]. Mean PSWQ scores for the three groups were 50.25 (sd

14.61), 48.00 (sd 11.65) and 48.70 (sd 12.53) for Negative, Positive and Neutral Groups respectively.

3.2 Mood measures

Table 6 shows the mean anxiety, sadness and happiness measures for each Group both before and after

the mood induction. These were subjected to a group (negative vs. positive vs. neutral) x time (pre-

induction vs. post-induction) analysis of variance. Anxiety ratings exhibited a significant group x time

interaction [F(2,57)=7.56, p¡.001]. Although there was no significant difference between groups on the

pre-induction measure [F=2.25, LSD all ps¿.05], there was a significant difference between groups on

the post-induction anxiety measure [F(2,57)=7.34, p¡.001]. The Negative Group reported significantly

higher post-induction anxiety ratings than both the Positive and the Neutral Groups [LSD, both ps ¡.05].

There was no significant difference in post-induction anxiety ratings between groups Positive and Neu-

tral. These data were also subjected to an anxious (time 1) x anxious (time 2) within-subjects analysis

of variance. This exhibited a significant anxiety x time interaction [F(2,57)=5.00, p¡.005], reflected as a

significant increase in anxiousness between time 1 and time 2 in the Negative Group [mean diff=12.95,

p¡.03] compared with a decrease in the Positive and Neutral Groups.

Anxiety Sadness Happiness
Mood

Pre- Post- Pre- Post- Pre- Post-

induction induction induction induction induction induction

20.5 26.5 14.0 27.5 63.5 44.5
Negative

(20.8) (19.4) (22.6) (21.4) (14.5) (20.4)

Happiness ratings also exhibited a significant group x rating interaction [F(2,57)=19.35, p¡.001]. Pre-

induction happiness ratings did not differ significantly across groups (LSD, all ps ¿.05), but did differ

significantly between groups at the post-induction stage [F(2,57)=17.22, p¡.001]. Happiness ratings for

the Negative Group were significantly lower at post-induction than ratings for both the Positive and

Neutral Groups, and the Positive Group showed higher post-induction happiness ratings than the Neutral

Group [LSD, all ps¡.05]. When subjected to a within-subject analysis of variance, the happiness (time 1

vs. time 2) x group interaction was significant [F(1,57)=19.35, p¡.001], reflecting the fact that happiness

ratings go down in the Negative Group [mean diff.=-4.78, p¡.001] but up in the Positive and Neutral

Groups.

3.3 ReasonsTask

Figure 1 (not included) shows the ‘response profiles’ for each mo-4.10914(fi)8.055235.459(2)-4.10914())-236.878(x)-223.28830914(t)-204.148(a)5.64311(sd)-4.10914())-.64534(s)-7.8011(e)-191.631((w)-1.28648(a)5-213.535(t)-66(7))]TJ
265.459(h)-4.11137(a)5.64534(p5.64534n)-376.712(d)-4.23104(h)-4.10691(0552351(e)5.6453477(a)5.6453n)-376.7111(c)5.6431 -13.4398 Td

case of the Positive Group than in the case of the Neutral Grou

a negative mood to judge negative events as more likely than individuals in induced positive or neutral

moods.

MacLeod et al. (1991) have used this relationship between the accessibility of reasons why events

might happen and judgements about the probability of the event occurring to explain why severe worriers

have significantly higher estimates of bad future events happening to them than do nonworriers (see also

Vasey & Borkovec, 1992). However, their explanation is based on worriers having already elaborated

these reasons and them being more readily accessible than reasons why negative future events might

not happen. The present results suggest that this relationship between number of articulated reasons

and probability judgements can also be found in an unselected population of subjects when mood is

manipulated. This indicates that prior elaboration of reasons through chronic worrying is not a necessary

condition for the simulation heuristic to account for event probability estimates, but that mood also

appears able to influence the accessibility of reasons why events might occur.

The main effect of mood on the generation of reasons why future events might or might not happen

appears to be a reciprocal one in which negative mood influences the number of reasons why a bad future

event might happen, and positive mood influences number of reasons why a positive future event might

happen. Neither mood state influences reasons why events might not happen. The influence of mood on

reason generation for incongruent scenarios may, however, be varied. Whereas the ‘response profile’of

negative mood subjects in the context of a bad scenario clearly differentiates from that of subjects in

a neutral mood, there is no significance difference between the ‘profile’ of these groups in the context

of the good scenario. This, suggetsts that a negative mood solely exerts its influence on reasons for an

event occurring. In contrast the pattern is more complex in the case of a positive mood. The ‘response

profile’of subjects in a positive mood in the context of a good scenario differed significantly from those

in an induced neutral mood, interestingly, however, there was also a significant (negative) difference in

response profile for these groups in the context of the bad scenario. This finding suggests that perhaps a

positive mood has an inhibitory effect on incongruent scenarios unlike a negative mood that merely exerts

its influence on ‘pro’ reasons. The findings from the negative and neutral mood conditions are consistent

with the fact that people find it easier to retrieve reasons why an event would happen rather than retrieve

reasons why an event would not happen (Dunning & Parpal, 1989). Indeed, data from the neutral mood

induction group demonstrate that, in the absence of a mood manipulation, pro reasons are significantly

more readily generated than con reasons - regardless of whether the event being considered is a positive

or negative one. Furthermore, if a mood is congruent with the valency of the event for which reasons

are being sought (e.g. thinking of reasons why a bad event will happen while in a negative mood), such

reasons are likely to be more readily retrieved than if the mood and valency of the event are incongruent

(Blaney, 1986; Bower, 1981; Teasdale, 1983), and when pro reasons are more accessible this appears

actively to inhibit con reasons (Tversky & Kahnemann, 1973; Hoch, 1984). These processes may well

contribute to the effect of negative and neutral mood solely on the generation of pro reasons and not

con reasons. Moreoever, given that reasons for a good event in a positive mood were offered in most

abundance by the response group and also considering that individuals are prone to persist at processing

which maintains a positive but not a negative mood (Sinclair and Mark, 1992; Martin and Stoner, 1996)

one might indeed expect an inhibitory effect of incongruent scenarios in a positive but not a negative

mood.

Processes which facilitate the elaboration or accessibility of reasons why bad or negative future

events might happen will provide some explanation of why chronic worriers have such unrealistically

high judgements about the likelihood of such events happening (Vasey & Borkovec, 1992; MacLeod,

scenarios about the worry topic (Davey & Levy, 1997; Vasey & Borkovec, 1992), and this iterative

process allows for both the generation and elaboration of reasons why bad future events might happen.

Similarly, the dysphoric and negative mood frequently asso

Davey G.C.L. & Levy S. (1997) Catastrophic worrying: personal inadequacy and a perseverative

iterative style as features of the catastrophising process. Submitted.

Davey G.C.L., Hampton J., Farrell J.J. & Davidson S. (1992) Some characteristics of worry: Evi-

dence for worrying and anxiety as separate constructs. Personality & Individual Differences, 13, 133-

147.

Davey G.C.L., Jubb M. & Cameron C. (1996) Catastrophic worrying as a function of changes in

problem-solving confidence. Cognitive Therapy & Research, 20, 333-344.

Davey G.C.L., Tallis F. & Capuzzo N. (1994) The phenomenology of non-pathological worry: A pre-

liminary investigation. In G.C.L. Davey & F. Tallis (Eds) Worrying: Perspectives on theory, assessment

and treatment. Chichester: Wiley.

Dunning D. & Parpal M. (1989) Mental addition versus mental subtraction in counterfactual rea-

Wisocki P.A., Handen B. & Morse C.K. (1986) The Worry Scale as a measure of anxiety among

homebound and community elderly. Behavior Therapy, 5, 91-95.

107

