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Chapter 1

Introduction

This thesis investigates the task of automatic recognition of human faces in dynamic environments.



2 Chapter 1. Introduction

1.1 Computational Approaches

Many vision researchers, following Marr (1982), believed that the ultimate product of any visual

system was some type of three-dimensional reconstruction of its environment. Although the lower

levels of Marr’s visual ‘pipeline’ scheme were clearly defined, the specific detail for higher-level

processes, such as visual recognition of 3-D objects, were quite vague. This was mainly due to lack

of evidence, as the computational effort required to implement full object recognition schemes was

not available at that time. Once such systems using full 3-D models of objects were used to carry out

useful recognition tasks, it became clear that representations simpler than full 3-D reconstruction

may be more appropriate and make the task more computationally tractable.
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capable of some high-level mental manipulation and visualisation, it may well be that our everyday

visual processing of objects is done using simpler representations and reasoning.

The issue of invariance has to be considered carefully for any task, though this rarely needs to
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Chapter 2 describes the task of face recognition in unconstrained environments in detail and

draws up specific requirements to fulfill it. Previous work on face recognition is then examined,

looking at computational models and psychological and psychophysical evidence about face recog-

nition in biological vision systems. This is followed with discussion on how task requirements affect

the suitability of techniques and a direct comparison of performance and generalisation in several

approaches using the same face database, using published research results and our own experimental

data.

Chapters 3 to 7 give details of the five main experimental areas of research. Chapter 3 introduces

our pose-varying Sussex database and discusses methods for face representation, normalisation and

preprocessing techniques. Variations in face images are also studied to analyse how they affect

recognition performance, with particular reference to the Euclidean distance measure for image

comparisons. The contribution of the radial basis function (RBF) network is also analysed and

compared with related classifiers.

Chapter 4 explores the generalisation properties of the RBF network, looking specifically at

pose, scale and shift invariance. This is important, as it determines the accuracy of face segmenta-

tions required for data to be learnt or recognised.

Chapter 5 presents experimental work using a novel variant of the RBF network, the ‘Face

Unit’ network, which learns to identify one particular individual only. This is useful for future

applications as it gives an alternative, parallel method of learning tasks which can then be used as

additional evidence for identity.

Chapter 6 explains how the RBF network can be applied to image sequences. The data used

here was much taken from a much less ‘constrained’ environment than the other face recognition

databases, so that the suitability of the proposed approach to real-life applications could be assessed.

Chapter 7 explores the temporal learning abilities of the RBF network. We focus on simple

behaviours, based on head rotation, using a Time-Delay variant of the network to give a fast and

effective classification over time within image sequences.

Chapter 8 concludes the thesis, summarising contributions to the field of automatic face recog-

nition, and discussing directions and issues for future work.

In addition, there are three appendices, giving technical details to support the experimental



Chapter 2

Background

This chapter first outlines our task requirements. We then go on to survey general theories of object

recognition, including a review of psychological evidence, and computational research within face

recognition from the perspective of acquisition, representation and reasoning. The final section

will apply our proposed face recognition scheme to a standard database, giving comparisons with

published results for other approaches.

The particular face recognition task considered here concerns a known group of people in an

indoor environment such as a domestic living-room. Within such a task, it cannot be assumed

that there will be clear frontal views of faces at all times. Therefore, it is important not to lose
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would be required to monitor day-to-day events and allow some behavioural reasoning to help with

ambiguous data. This could allow expectations of who is likely to be present at a particular time of

day, and to assess the likelihood of encountering unknown people and conduct re-learning of the

database of distinct individuals (known and unknown) as required.

2.1 Task Requirements

The requirements for a useful, commercial face recognition and identity logging system for small

groups of known individuals in busy, unconstrained environments, such as domestic living-rooms or

offices, can be split into groups: there are general requirements that need to be satisfied by all parts of

the system, acquisition requirements concerned with monitoring and extraction of useful information,

face recognition requirements
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(e) Level of confidence in output available to allow discard of erratic or ambiguous data.

Note this should be able to reduce ‘false positive’ results without creating a large pro-
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2.3.4 Face Detection and Segmentation

Detection of faces using specific facial features will not be possible for our task, due to the low

resolution of the data, see Section 2.4.1. An alternative is to use the whole face pattern as a

holistic representation, such as with eigenface information (Turk & Pentland, 1991; Moghaddam

& Pentland, 1995). A successful neural network face detector has been developed by Rowley

et al. (1996), which also used receptive fields to give some translation and scale invariance. A

bootstrapping algorithm is used to get around the problem of finding suitable ‘non-faces’ (negative

examples) to train with by incorporating initial false-positives as subsequent training data. This

use of only the most confusable near-face examples, rather than a potentially huge range from the

whole spectrum of ‘non-faces’, can substantially reduce the size of training set required for good

performance compared to earlier approaches.

Face detection in image sequences is very much easier, due to motion cues, than for single

images and can be integrated into tracking techniques. Once a face been found in a frame, temporal

correlations greatly reduce the search space in subsequent frames, for instance, McKenna and Gong

(1997) were able to combine motion detection by spatio-temporal filtering with face detection

with a neural network based on Rowley et al. (1996). More recently, they have been able to use

colour to further reduce computation and give greater invariance to rotations in depth and partial

occlusions (McKenna et al., 1997a).

Face detection not only includes finding a face in an image, but also determines how much

of the face and background is actually segmented for further testing. The approach taken to face

segmentation is important when assessing performance, as transitory details, such as hair style and

background details, if included in training data, may be used as the most effective distinguishing

detail. For instance, if one person stands next to a plant for a picture, whilst another does not, it is

very much easier to check for the presence of the plant rather than to compare subtle facial details.

Some groups, such as Craw et al. (1995), ignore higher performance of experiments conducted

with face images with hair included, as this face representation is not seen as being sufficiently

general for images taken over time, and prefer to cite poorer results for hair-free data. There is

some psychological evidence that person-specific details such as hair may be used by humans for

unfamiliar face recognition (Hancock et al., 1997), however, so the visual features that are used for

recognition may well be dependent on the task.

In contrast, non-person-specific details such as background are more obviously spurious for

recognition. Turk and Pentland (1991) acknowledged that the background surrounding the faces

in their database was a significant part of the image data used to classify the faces. Of course,

this must severely limit generalisation of such an approach when it is trained with data against one

background and tested with data containing a different background.

2.3.5 Normalisation and Vectorisation of Images

Once a face has been localised and segmented within an image, the image itself must be standard-

ised or normalised prior to further processing to improve the efficiency of matching. Sometimes

such normalisation is just an adjustment of grey-level intensity values, but here we are considering

adjustments to the image shape. This could be as simple as a rescaling to some standard size, or as

complex as remapping each pixel.

The normalisation and vectorisation of an image are approximately similar processes. Image

normalisation is generally taken to be a process of adjusting to allow particular areas in different

images to line up when any two images are matched together. For example, face images are very

commonly normalised via affine transform on the basis of the positioning of both eyes (and some-

times mouth or nose position). This can be taken further via the ‘morphing’ the face texture on the

basis of a larger number of standard facial landmark positions. ‘Dense correspondence’ is the ulti-

mate correspondence, where all elements of the image vector correspond to pixel information from

the same object feature in scene, in other words, the process creates a feature-based representation

from the pixel information (in the most abstract meaning of ‘feature’).
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2.4.3 Principal Components Analysis and ‘Eigenfaces’

Principal components analysis (PCA), is a simple statistical dimensionality reducing technique that

has perhaps become the most popular for face recognition. PCA, via the Kahunen-Loève transform,

can extract the most statistically significant information
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Multi-layer Perceptrons and Associative Networks

The Multi-layer Perceptron (MLP), commonly trained using gradient descent with error back-

propagation, is capable of good generalisation for difficult problems, but is notoriously difficult to

ensure global convergence under all training runs, as the non-linearity of the hidden units and the

nature of the input-output mapping lead to a large number of local minima, and training times

can typically be long. Cottrell et al. (1987), Fleming and Cottrell (1990) used multi-layer networks

with target output equal to input (auto-association) in order to compress photographic images. The

network was trained on random patches of image. The compressed signal could be taken from the

hidden layer of units (these values were effectively eigenvalues, the eigenvectors, called ‘holons’

here, being contained in the weight values between the unit layers), and these values could, in turn,

be put back in to decode or uncompress the original image as output values.

Cottrell et al. (1987) found that the non-linear arrangement of their multi-layer network did

not actually improve the compression of images when compared to networks using linear units. For

this reason, all following networks used for PCA, such as Turk and Pentland (1991) for instance,

have used simpler linear associative networks. However, Valentin et al. (1994) suggests that while

linear associative networks and MLPs using back-propagation which calculate PCA can be effective

for single-viewed classification tasks, they may not be as effective as HyperBF networks (Poggio &

Edelman, 1990; Brunelli & Poggio, 1991) in a nonlinear mapping task, for example the classification

of people with varying head pose (see Section 2.5.4).

2.5.3 Hierarchical Neural Networks

The Cognitron (Fukushima, 1975) and Neocognitron (Fukushima, 1988) were biologically-inspired
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to train with small amounts of data, due to the large numbers of layers the information has to

passed through. It is clear that 3-D objects can be invariantly represented in such structures (Rolls,

1995; Wallis & Rolls, 1997), but at present the computational load precludes them from real-time

applications. They would be suitable for a parallel process, but the specialised hardware required

would exclude them from task suitability this time through cost (Task Requirement 1a).

2.5.4 Radial Basis Function Networks

One can implicitly model a view-based recognition task using linear combinations of 2-D views

(Ullman & Basri, 1991) to represent any 2-D view of an object. A simpler approach is for the system

to use view interpolation techniques (Poggio & Edelman, 1990; Brunelli & Poggio, 1991) to learn

the task explicitly. Radial basis function (RBF) neural networks have been identified as valuable

adaptive learning model by a wide range of researchers (Moody & Darken, 1988; Broomhead

& Lowe, 1988; Poggio & Girosi, 1990b; Musavi et al., 1992; Ahmad & Tresp, 1993; Bishop,

1995) for such tasks. Their main advantages are computational simplicity, supported by well-

developed mathematical theory, and robust generalisation, powerful enough for real-time real-life

tasks (Pomerleau, 1989; Rosenblum & Davis, 1996). They are seen as ideal for practical vision

applications by Girosi (1992) as they are good at handling sparse, high-dimensional data and because

they use approximation to handle noisy, real-life data. The nonlinear decision boundaries of the

RBF network make it better in general for function approximation than the hyperplanes created by

the multi-layer perceptron (MLP) with sigmoid units (Poggio & Girosi, 1990b), and they provide a

guaranteed, globally optimal solution via simple, linear optimisation. The RBF network is a poor

extrapolator (compared to the MLP) and this behaviour can give it useful low false-positive rates in

classification problems. This is because its basis functions cover only small localised regions, unlike

sigmoidal basis functions which are nonzero over an infinitely large region of the input space.

Regularisation Networks are based on mathematical regularisation theory and include RBF and

HyperBF (HBF) networks in configurations where the networks have an equal number of hidden

units and training examples (Girosi et al., 1995). They can be seen as performing generalisation

through non-linear view approximation (Bülthoff & Edelman, 1992), which has the advantage over

linear interpolation (linear combination of views) (Ullman & Basri, 1991) in that it is less affected

by variation orthogonal to learnt variation, see Figure 2.1. The RBF network can be considered as

a special case of the more general HBF network (Poggio & Girosi, 1990b).

Once training examples have been collected as input-output pairs, that is, with the target class

attached to each image, tasks can be simply learnt directly b
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very similar to those used in Brunelli and Poggio (1991).

Ahmad and Tresp (1993) trained a variety of nets to recognise stationary hand gestures from

computer-generated 2-D polar coordinates of fingertips (not actual images). They achieved good

generalisation in 3-D orientation and their system was able to cope well even when much of the data

was missing. Their standard test data was best handled by a back-propagation net, but this performed

badly with missing or uncertain (noisy) features, suffering a serious fall-off in performance as more







2.6. Comparing Face Recognition Techniques 27

Group Technique Images per Person Processing Time

1 2 3 4 5 Training Classification

Samaria HMM ? ? ? ? 87 ? ?

& Harter pseudo 2-D HMM ? ? ? ? 95 ? 4min

Lawrence Eigenfaces 61 79 82 85 89 ? ?

et al. PCA + MLP ? ? ? ? 59 ? ?

SOM + MLP ? ? ? ? 60 ? ?

PCA + CN 66 83 87 88 92 ? ?

SOM + CN 70 83 88 93 96 4hr <0.5sec

Lin et al. PDBNN ? ? ? ? 96 20min <0.1sec

Lucas n-tuple 54 68 75 78 81 0.9sec 0.025sec

cont n-tuple 73 84 90 93 95 0.9sec 0.33sec

1-NN ? ? ? ? 97 0sec 1sec

Howell RBF before discard 49 65 72 80 86 8sec 0.01sec

& Buxton after discard 84 90 91 95 95 8sec 0.01sec
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pose and filter-based preprocessing methods, affect the distances between face identity classes. In

particular, we will concentrate on how such distances are modified with pose variations, as this is

crucial for our task. In addition, the reasoning component of the RBF network will be analysed

and compared with related classification methods.



Chapter 3

Representations of Pose-Varying Faces

The previous chapter has shown the suitability of our proposed approach to the main task of

face recognition, using a computationally efficient approach based on RBF networks with simple,



32 Chapter 3. Representations of Pose-Varying Faces

We first look at the fundamental similarity mechanism we use f
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strate practically how the resolution affects the entire database when used to train a variety of

classifiers.

3.1.2 Varying Face View

The pose view of the person is another factor, besides resolution, that affects the inter-class dis-

tinction. This is illustrated by Figure A.12 in Appendix A, which shows all Euclidean distances for

six individual images at the 25�25 resolution from the Sussex Database, three each from classes 0

and 1 using pose angles of 0� (frontal), 40� and (a) 90� (profile). As in Figures A.8 and A.9, all 100

distances are shown on the graphs, connected by lines according to class, and the zero value can be

seen where the image is compared to itself.

Results

The extreme profile view (90�) is less distinct than the centre views in Figure A.12 in Appendix A,

and this will add to the problem of lack of interpolative data when we come to use these images

with the RBF network, which largely relies on data interpolation. Because of this, we can expect

that performance for the RBF networks using profile information will be significantly lower than

for the central views and also lower than for the frontal (0�) view, where the intra-class views remain

distinct for a greater range of views.

Intra-class Euclidean distances have been shown to be less, for some specific images in the

Sussex database at least, than for inter-class comparisons for small pose angle ranges. This shows

the potential of using such comparisons for recognition, especially where training examples can be

provided at regular pose intervals.

Figure A.12 shows some bias in intra-/inter-class distinction for the frontal range (0–45�) over

the profile range (45–90�). This may help to explain experimental results in unfamiliar face recog-

nition, such as O’Toole et al. (1995), where no advantage was found for ‘3/4’ views over frontal

views (instead both were equivalent and much faster to match than profile views). Bruce (1988)

took such results as supporting the view that 3/4 views were not serving as ‘canonical’ represen-

tations for recognition and that full-face and profile view might be separately represented. The

mid-pose views used in Figures A.8, A.9, A.12(b)(i) and (ii) all show that same-class frontal views

can quite often be discriminated from other-class views simply on the basis of Euclidean distance
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The nose-centering technique we have employed here is not a rigorous, mathematical vec-

torisation of the image, such as used by Beymer (1995), but the hand-alignment of facial features,

such as the left eye and nose, over pose is shown to improve gen
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Resolution Centering Initial % % Discarded % After Discard

100�100 Nose 76 50 100

Face 72 66 100

50�50 Nose 82 42 100

Face 70 58 95

25�25 Nose 78 52 100

Face 62 64 100

12�12 Nose 72 46 96

Face 70 60 90

6�6 Nose 46 40 63

Face 64 40 87

Table 3.2: Test generalisation for 5-example RBF network using DoG preprocessed images at
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Figure 3.2: Effect on test generalisation (after discard) of changing the ‘low confidence’ threshold

for 50/50 RBF networks trained with DoG preprocessed 25�25 faces images from Sussex database.

The low confidence threshold is based on the ratio between highest and second highest output

units, and a value of 1.8 has been found to be useful in practise.
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Classifier Distance Initial % % After

Metric % Discarded Discard

NN (WTA) City-Block 43 - -

Euclidean 43 - -

NN (Class-based) City-Block 43 - -

Euclidean 43 - -

PNN City-Block 32 - -

Euclidean 39 - -

RBF City-Block 39 83 80

Euclidean 39 90 100

Table 3.4: Test generalisation for 1-example classifiers using City-Block and Euclidean distance

measures trained with DoG preprocessed 25�25 faces images from Sussex database.

In summary, it was not as easy to distinguish pose classes as it was for identity classes. This

suggests that, for this database at least, images of different identity are further apart in Euclidean

space than images of different pose. We can say that the use of learning by examples distinguished

by Euclidean distances is therefore especially appropriate for face recognition in the presence of

large pose changes, as the distances are affected more by identity than pose.

3.2.6 Discussion

This section has presented generalisation performance from a variety of kernel-based classifiers

trained with the Sussex database. These show that it is possible to distinguish face classes using simple



42 Chapter 3. Representations of Pose-Varying Faces

10 100 1000 10000
(Log) Number of DoG Convolved Input Values

40

60

80

100

%
 G

en
er

al
iz

at
io

n

RBF After Discard
RBF Before Discard
NN (WTA)
NN (Class−Based)
PNN

Figure 3.3: Effect of changing the number of input data values on test generalisation for 50/50

classifiers with five training examples per class. This number is varied via the original image reso-

lution of face images from Sussex database before DoG preprocessing, see Table C.1, Appendix C,

for details.

Discarding is only shown for RBF, as the nearest neighbour (NN) classifiers and probabilistic neural

network (PNN) do not provide enough differentiation between output units to enable a discard

measure, see Figure 3.4.
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Figure 3.6: Effect on test generalisation for 50/50 RBF networks of changing DoG scale for the

preprocessing of 25�25 faces images from Sussex database, before and after discard.

Changes in DoG scale will affect the mask size and, therefore, the amount of data remaining after

convolution, see Figure C.2.

Number of Samples Thres- Grey-Level Initial % % After

Scales per Image holding Range % Discarded Discard

1 441 No Full 52 66 71

Yes Full 78 52 100

Reduced 90 22 100

4 1556 Yes Full 86 40 100

Table 3.5: Test generalisation for 5-example 50/50 RBF networks using non-thresholded (gradient)

and thresholded (zero-crossings) DoG preprocessing, with one and four DoG scales.
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Results

Table 3.5 shows the results with all these variations in the preprocessing stage. Training with ‘zero-

crossings’ thresholded data gave better generalisation compared to the non-thresholded ‘gradient’

data. The use of multiple DoG scales gave a modest improvement in performance, but required

four times as much data than for one scale.

The use of data with a reduced range of grey-levels gave a great increased generalisation com-

pared to tests using the full range of grey-levels, but it is an ad hoc heuristic at present, taking

advantage of the constrained conditions of the Sussex database, and it is unclear how to generalise

such a technique to all lighting conditions.

In summary, varying a wide range of parameters in the DoG preprocessing did not seem to
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Figure 3.7: Effect of changing the angle of orientation in single orientation Gabor preprocessing on

test generalisation after discard for 50/50 RBF networks using 25�25 face images from the Sussex

database (see Section C.2, Appendix C, for details of sampling schemes).
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Figure 3.8: Effect of changing number of orientations on test generalisation and discard rates, using

Gabor ‘Bx’ preprocessing of 25
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Figure 3.9: Effect on test generalisation and discard rates of changing number of Gabor coefficients

through selection of specific scales (see Table C.4, Appendix C, for details) for A3 preprocessing of

25�25 faces images from Sussex database.

decision puts constraints on the nature of the filter-based preprocessing that can be performed, as

the number and extent (determined by the filter mask size) of sampling positions within the image
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Reassigning the Sussex database image classes in order to classify them in terms of specific pose

classes rather than identity classes met with less success than the other way around, though a lower



Chapter 4

Invariance Properties of the RBF Network

This chapter explores the invariance characteristics of the RBF network, looking at how tolerant it

is to particular forms of image variation, and how this is affected by the preprocessing of the input

data. It is important to know how robust our system is to the variation anticipated for the main

task, as this will determine the accuracy of face segmentation and preprocessing computational load

required for data to be learnt or recognised.

The experiments in the first half of the chapter are designed to show how well the RBF network

can learn identity and generalise to novel images with data w
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4.1 Test Details

All the experiments in this chapter use the 100 image, 10 person ‘Sussex Database’, for details see

Section A.2, Appendix A. This database has been designed to test recognition abilities for faces over

a 90� range of poses from frontal to profile, see Figure A.5 for example. A pixel-based representation

of the 2-D image, used as a 1-D vector for input to the network, will not provide any particular

invariance to image variation by itself. It will be the preprocessing and reasoning stages that provide

the necessary invariance. To compare and contrast the effects of preprocessing without a large

number of results, most of the tests will concentrate on two applications of the DoG and Gabor

techniques discussed in Section 3.3 of the previous chapter:

Single-scale Difference of Gaussians (DoG) filtering This is performed as a convolution of

the image with a 2-D DoG filter mask of a single scale factor (0.4), with thresholding to give

binary zero-crossing information. Each processed image has 441 samples, corresponding to a

21�21 convolution of the original 25�25 image.

Gabor filtering This is 2-D Gabor wavelet analysis at four scales and three orientations (termed

‘A3’ in Section 3.3.2). Each processed image has 510 coefficients, corresponding to the

outputs of the different scaled and oriented filters at different positions.

4.2 Pose Invariance

Task Requirement 3(d)ii specifies an invariance to pose, and so it is important to test our system to

determine what limits it has in this respect. In our potential environment, the subjects are allowed

unrestricted movement around the room, and therefore will be visible at any pose angle towards the

camera that is physiologically possible for the head around the vertical (y-) axis. Obviously, views

such as the back of the head are not learnable, in terms of identity, especially as the requirements

specify an invariance to hair style (Task Requirement 3(d)iii).

A useful system in an unrestricted environment should be expected to cope with the full range

of views that contain facial information, which is roughly�120�, where 0� is the frontal view. Such

a wide pose range is in contrast to many face recognition systems which do not explicitly dealt with

pose, preferring to restrict data to face images with very slight pose variation (typically �15�),

which can be approximated as linear. RBF networks, in view of their interpolation properties,

should allow some pose invariance (given sufficiently close examples for effective interpolation),

but the extent of this will need to be determined empirically.

In this section, we will be testing the RBF network for two types of pose invariance by training

with two different arrangements of the data examples: the first searches for inherent invariance by

training with unvaried images (in other words, one fixed pose for all classes) and testing with varied

images only (all the other poses not seen during training), the second is looking for learnt invariance

by training with explicit examples of pose variation.

4.2.1 Inherent Pose Invariance

The pose invariance that we have termed ‘inherent’ in this section is the generalisation obtained

when the RBF network has been trained with images that have no pose variation (that is, they all

come from one fixed pose position), and is then tested with images of different pose to that used

for training.

When testing for inherent pose invariance with the Sussex database, where all images for each

class have a different pose angle, g
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Network Number of Number Number of

Training examples per Class Test images

20/80 20 2 80

30/70 30 3 70

40/60 40 4 60

50/50 50 5 50

Table 4.1: The four different types of interpolating RBF networks, used to test learnt pose invari-

ance.

Pre- Network Training Training Pose Initial % % After

processing Examples Angles (�) % Discarded Discard

DoG 20/80 2 20,70 48 73 91

30/70 3 20,50,70 61 56 94

40/60 4 10,30,60,80 67 67 100
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(ii) 30/70, average discard 68%.

(a) DoG preprocessing
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(ii) 30/70, average discard 48%.

(b) Gabor preprocessing

Figure 4.4: Learnt Pose Invariance: Test generalisation with 20/80 (trained with two images per

class) and 30/70 (three per class) interpolating RBF networks, varying over selections of pose angles:

from left to right, widely to closely space intervals.
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(a) +25%, 111�111 (b) +12.5%, 107�107(c) normal, 100�100 (d) –12.5%, 94�94 (e) –25%, 87�87

Figure 4.6: Example scaled versions of the original front view of one individual from the Sussex

database, used to test for scale invariance, with relative size to the normal sampling area, and size of

window grabbed from (in pixels).

Variation Network Pre-processing Initial % % Discarded % After Discard

Shift 100/400 DoG 12 89 7

Gabor 35 82 47

Scale 100/400 DoG 48 76 76

Gabor 83 36 88

Table 4.3: Inherent Shift and Scale Invariance: Effect on test generalisation for the RBF network of

different variations in the dataset, both before and after discarding of low-confidence classifications:

networks trained with all ten non-varied versions of poses for each person and testing with varied

versions (100 training and 400 test images).

� A
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Variation Network Pre-processing Initial % % Discarded % After Discard

Shift 100/400 DoG 38 85 85

Gabor 69 60 89

250/250 DoG 52 71 92

Gabor 85 35 98

Scale 100/400 DoG 44 77 78

Gabor 64 55 88

250/250 DoG 66 57 94

Gabor 90 26 97

Table 4.4: Learnt Shift and Scale Invariance: Effect on test generalisation for the RBF network of

different variations in the dataset, both before and after discarding of low-confidence classifications:

networks trained with all five shift or scale-varied versions of two (100/400) or five (250/250)

equally spaced poses for each person.

(7%) being even lower than random (10%). The network using Gabor preprocessing was able to

give a low level of useful generalisation.

In contrast, the scale-varying test data appears to be much easier for the network to generalise

to, even without explicit training examples, and a useful level of performance was obtained with

both types of preprocessing. As before, the Gabor preprocessed training data was easier to learn and

generalise with compared to the DoG preprocessed data, and networks using the former were able

to give a high level of generalisation performance, even without discard.

Summary

This section has shown that the RBF network has a significant inherent invariance to scale differ-

ences with the Gabor preprocessed face data from the Sussex database, and a moderate invariance

with the DoG preprocessed data. In marked contrast, the shifted images were very much harder for

the network to generalise to with both preprocessing techniques.

Figures 4.8(a) and (b) show that these differences primarily arise out of the choice of prepro-

cessing, although the scale transformation also seems to alter the image vector less than the shift

transformation. This is shown by the ‘other class’ line for the Gabor scaled images, (b)(ii), being

noticeably further away from the ‘same class’ line than for the other combinations of transformation

and preprocessing.

4.3.3 Learnt Shift and Scale Invariance

The experiments in this section test for learnt shift and scale invariance. As before, they use a

fixed selection of pose positions for training examples, but this time use all five versions (4 varied,

1 unvaried) of each original image. This helps the network to learn about the shift and scale

image variation during training and thus develop a learnt invariance. The difference between the

generalisation performance found in the previous section (with inherent invariance) and in the tests
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(a) Single scale (normal) DoG preprocessing
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(b) Multi-scale (normal) Gabor preprocessing
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(c) Multi-scale DoG preprocessing

Figure 4.8: Euclidean distances for images from the Sussex database to same- and other-class images,
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4.4 General Discussion

Chapter 3 showed how the representation used for input data can have a profound effect on the

ability of the RBF network to generalise from a learnt task. This chapter has developed these ideas

to analyse how specific variations in the image will affect such generalisation.

The experiments in Section 4.2 looked at invariance to head p



Chapter 5

Face Unit RBF Networks

This chapter introduces a different way of learning the face recognition task through the reorgani-

sation of the standard RBF networks into a group of smaller ‘face recognition units’, each trained
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‘Pro’ Output Unit ‘Anti’ Output Unit

‘Pro’ RBF Units ‘Anti’ RBF Units

Figure 5.1: General structure for a ‘face unit’ RBF network. Although there can be a varying

number of and ratio between pro and anti hidden units, there are always two output units (for and

against the class learnt by the network). All hidden units are fully connected to both output units.

This can be compared with the standard RBF network model shown in Figure B.1, Appendix B.

per class) only, the face unit network has two output units, one positive, denoting ‘yes’ for the

current class and, and one negative, (‘no’) for all other classes. We use the term pro to denote

hidden units or evidence for the class, and anti for that against the class, the negative evidence. For

each individual, a face unit RBF network can be trained to discriminate between that person and

others selected from the data set, using this pro (supporting) and anti (differentiating) evidence for

and against the individual. The ratio between the two can be varied.

Although this approach increases complexity, as more networks need to be trained and and the

training data needs to be manipulated differently for each face unit, the splitting of the training

for individual classes into separate networks gives a modular structure that can potentially support

large numbers of classes, since network size and computational load for weight calculations for the

‘standard’ RBF model may become impractical as the number of classes increases.

5.1.1 Selection of Negative Evidence

The fundamental process in the face unit network is the splitting of the training data into two halves:

class and non-class. The small size of the network is due to the limited amount of non-class data

used for training, only those that are seen as har36897(e)-0.356735(t)1.3(o)0.452493(g)3.246252.28756(i)2.47039T65563(a45(r)20.s)0.629861(e)1.47934(n)0.4
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Network Training Examples per Class

1 5

Standard RBF network 10 50

Single anti Face Unit Network 2 10

Double anti Face Unit Network 3 15

Table 5.1: Numbers of hidden units used by different RBF networks for same task (when using the

Sussex database).

‘Single anti’ face unit network This uses equal numbers of pro and anti hidden units.

‘Double anti’ face unit network This uses two anti hidden units for every one pro.

The double anti face unit network is closer than the single anti arrangement to the full standard

RBF model, in that it uses more negative than positive evidence. It is included in the tests to show

whether this additional information would give the network better discrimination from the negative

classes than the single anti arrangement. This characteristic will be more important as the number

of classes in the dataset increases, as the number of negative classes will become proportionately

greater.

We can compare the relative sizes of the face unit network and the standard RBF network. The

standard RBF network uses cn hidden units, where c is the number of identity classes and n is the

number of training examples per class. This gives 10n hidden units in total when using the Sussex

database, as shown in Figure 5.1. The single anti face unit network has only two classes for training

(for and against a single person) and a single anti hidden unit for every pro unit, and therefore

has 2n hidden units in total (however many identity classes there are). The double anti face unit

network uses two anti hidden units for every one pro, and therefore has 3n hidden units in all. The

outcome of this is that as c, the number of identity classes, increases, the face unit network required

for a particular task will becomes much smaller relative to the standard RBF network needed for

the same task.

Once the number of examples is chosen, we then use two different strategies for the selection

of the anti evidence. This gives two further types of network:

‘Single best negative’ (sbn) face unit networks These use an average of all vector distances
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Figure 5.2: Example of the range of negative classes that can be selected during the training of a

5+10 double anti, multiple best negative (mbn) face unit RBF network.

The top line shows the supporting, ‘pro’ evidence, the middle and bottom lines the differentiating,

‘anti’ evidence (middle line is the closest to the pro class, bottom line the second closest).

network sizes from 1+1 to 6+12 on the standard 100-image Sussex database (if these networks

had been labelled in the standard ‘train/test’ form, this would correspond to a range between 2/98

and 18/82 networks). To give an optimal spread of the image data for training, fixed selections of

pose angle were used for each size of network, as used in Chapter 4 (see Table 4.2). For instance,

the 5+5 and 5+10 networks used poses 10�, 30�, 50�, 70� and 90�, where the pose range was

0� (frontal)–90� (profile).

Figure 5.2 shows how the images used for training were selected for a 5+10 mbn face unit

network in the experiment. This illustrates not only how several anti classes are used in the mbn

scheme, but also how they are ranked for the double anti arrangement.

5.1.4 Results

As in the previous chapter, for clarity, our tests use two standard preprocessing methods only: the

single-scale DoG and the Gabor A3 with four scales and three orientations (details in Section 3.3

and Appendix C).

Figure 5.3 summarises the overall results for the various types of face unit networks, with differ-

ent pro/anti ratios and different strategies for selection of anti images. To simplify the information,

these graphs do not show the rates after discard, but these gave a consistent improvement of about

7–15% over rates before discard for all networks.

The face unit networks are essentially working in a two-class classification problem, so a random

level of generalisation would be 50%. Interestingly, the double anti network arrangement did not

appear to give radically better performance than the single anti, except for the 5- and 6-example

networks using Gabor preprocessed data. This indicates that the selection of appropriate anti images

is efficient enough by itself to create a division in image space between the class and all others

without requiring additional negative examples.

Table 5.2 shows specific generalisation rates for the 5-example (5+5 and 5+10) face unit net-

works before and after discard. It can be seen here that the Gabor preprocessed data allowed the
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Variation Pre-processing Network Initial % % Discarded % After Discard

Shift DoG 25+25 70 67 82

25+50 69 46 69

Gabor 25+25 83 35 92

25+50 86 27 92

Scale DoG 25+25 78 50 89

25+50 79 40 84

Gabor 25+25 88 29 94

25+50 90 23 96

Table 5.3: Generalisation for 5-pose-example multiple best negative (mbn) face unit networks

(25+25 and 25+50) with shift and scale varying data.

RBF network to perform more efficiently than the DoG preprocessed data, both in lower discard

rates and generalisation before and after discard.

Summary

The mbn strategy for selecting anti evidence seemed slightly better than the sbn, indicating that
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Discard
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Discard Initial % % after Ratio after

Measure % Discarded Discard Discard

Standard RBF 78 52 100 24/24

Network Only

1 78 86 100 7/7

2 78 58 100 21/21

3 78 58 100 21/21

Cooperative 4 78 54 91 21/23

Threshold 5 78 48 92 24/26

6 78 48 92 24/26

7 78 6 81 38/47

8 78 0 78 39/50

(a) DoG preprocessing

Discard Initial % % after Ratio after

Measure %
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Discard Initial % % after Ratio after

Measure % Discarded Discard Discard

Standard RBF 85 35 98 159/163

Network Only

Cooperative 1 85 49 98 126/128

Threshold 6 85 13 91 197/217

(a) Shift-varying data

Discard Initial % % after Ratio after

Measure % Discarded Discard Discard

Standard RBF 90 26 97 178/184

Network Only

Cooperative 1 90 42 98 141/144

Threshold 6 90 10 94 212/226

(b) Scale-varying data

Table 5.7: Generalisation and discard rates for different discard measures with shift and scale varying

data: ‘Standard RBF Network Only’ is the result using a simple discard measure applied to the

output of a standard 50/50 RBF network by itself, the ‘Cooperative Threshold’ is a threshold

value applied to the confidence rating arising from cooperating 250/250 multi-class standard RBF

networks and 25+50 double anti multiple best negative (mbn) face unit RBF networks, using Gabor

preprocessing.
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simple, one-network threshold used previously.

Different rating threshold levels can be used with the cooperative scheme to give either high

confidence with high discard (using a rating threshold of 1), or moderate confidence with low discard (rat-
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5.4 General Discussion

This chapter has presented experimental work using a novel variant of the RBF network model,

the face unit network, which learns to distinguish a single class from a range of other classes. This

can be used either in groups, one for each class, or singly in conjunction with a multi-class network

to give greater reliability to classification.

The most useful configuration of face unit RBF network overall seems to be the single anti

multiple best negative (mbn) face unit network, which selects the most useful anti evidence to

match each pro example on a pose-by-pose basis.

The standard RBF network will give similar positive and negative information about classes,

because of the fully interconnected hidden to output unit layer, but the face unit network, by

concentrating only on distinguishing one class at a time, allows the negative influences of such non-

class connections to be more specialised, indeed optimised, to give the most effective ‘one class

against all others’ partitioning in image space.

The modular approach presented in this chapter using face unit RBF networks to learn identity

is especially attractive for the unconstrained recognition task, as it allows the modification of the

learned element of the system during use, and can give a secondary classification decision which

can either confirm or dispute the primary RBF network output.

Although the face unit network allows finer control in the recognition process with the standard

RBF network than can be provided by the latter alone, it is not used for the next two chapters,

which deal with image sequences and the recognition of temporal patterns. This is because it is

felt that the results will be more understandable if the common baseline of system configuration

from chapters 3 and 4, comprising of the standard RBF network with simple discard measure, is

maintained for this later experimental work.

Chapters 3 and 4 and this chapter have explored the behaviour of the RBF network in the

narrow context of training with the Sussex database. The next chapter applies a more realistic test

to the network, using image sequences from a less tightly constrained environment.



Chapter 6

Face Recognition using Image Sequences

This chapter presents experiments using the Radial Basis Function (RBF) network to tackle a more

unconstrained face recognition problem using low resoluti
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we are computationally constrained to the inter-frame period (of the order of tens of milliseconds)

determined by the frame grabber and the localisation software. Offsetting this limitation is the vast

quantity of data from image sequences, which suits any technique that can discard low-confidence

output to leave a high ratio of correct classifications. In the context of videos of people moving

around a room, where large numbers of images of each person in the environment will be produced

and changes in the identities present will not be abrupt (from one frame to the next), even quite

high discard ratios of 80-90% may be acceptable if the remaining output is of sufficiently high

quality.

6.1 Specification for Image Sequences

The image sequences used in the tests reported here are the result of collaboration with Stephen

McKenna and Shaogang Gong at Queen Mary and Westfield College (QMW), London, who are

researching real-time face detection and tracking (McKenna et al., 1996). This work is still at a

preliminary stage, and many issues are still unresolved, such as the nature of appropriate training

data: how constrained does it need to be, and how automatic its original collection from the data
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Training Train/Test Initial % % After

Selection Interval Frames % Discarded Discard

2 278/276 96 12 98

5 114/440 88 30 99

10 60/494 75 50 90

20 33/521 58 68 90

30 24/530 48 81 93

50 16/538 40 81 86
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Training Train/Test Initial % % After

Selection Interval Frames % Discarded Discard

2 278/169 43 69 42

5 114/169 32 76 19

10 60/169 44 75 35

20 33/169 23 76 21

(a) DoG preprocessing

Training Train/Test Initial % % After

Selection Interval Frames % Discarded Discard

2 278/169 61 41 77

5 114/169 56 45 77

10 60/169 60 43 81

20 33/169 54 42 66

(b) Gabor preprocessing

Table 6.2: Effect of preprocessing methods on test generali
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Time Window Initial % % After Discard

1 66 86

3 72 86

5 68
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unconstrained image sequences. It is clear that the ability of the RBF networks to give a measure

of confidence, which allows temporal integration over image frames where the visual evidence is

poor, is essential for this development.

Work is progressing together with colleagues at QMW in refining the face detection scheme

and automated on-line learning of new classes of individual. The next stage of development will

integrate this refined on-line face detection and localisation with the trained RBF networks to cope

with real-time image sequences including the usual variations in illumination as well as position,

scale, view and facial expression. It is clear from the work of Bishop (1995) and others that using

statistically based techniques is the key to good performance. The RBF techniques are mathe-

matically well-founded, which gives a clear advantage in engineering a solution to our application

problems.



Chapter 7

Recognition of Simple Behaviours using

Time-Delay RBF Networks
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frames 0–9 for each person. Two schemes were devised to split the data up:

� the Alternate Frames (AF) tests, illustrated in Figure 7.2, used alternate frames from each

person, so that training and test data contained all ten people and the window size range was

2–5 frames, and

� the Alternate Person (AP) tests, illustrated in Figure 7.3, which used all the frames from 5

people for training, and the other 5 for testing. The window size range for the AP tests was

2-9 frames.

It can be seen that the two types of selection process and the varying window sizes gave a wide

range of numbers of sequences that could be used as data. In addition to this, the variety of data

will be increased by the type of head rotation.

Head Rotation Classes

Three classes were used for training the TDRBF network, corresponding to three types of rotation

present in the image sequence:

LR sequences These simulate a left to right head rotation in a ‘window’ within the ten frames

0–9 for each person, such as shown in Figure 7.2(a). Sequences were interleaved with each

other to use all the frames for each person. For example, if the window size was 4, the

sequences used would be, for the AF tests, 0,2,4,6 and 2,4,6,8, and for the AP tests, 0,1,2,3,

1,2,3,4, 2,3,4,5 up to 6,7,8,9.

RL sequences These are identical to LR, except that the rotation is in the opposite direction

(from right to left), as shown in Figure 7.2(b), so the frame numbers go from 9 to 0. For

example, if the window size was 4, the sequences used would be, for the AF tests, 8,6,4,2

and 6,4,2,0, and for the AP tests, 9,8,7,6, 8,7,6,5, 7,6,5,4 down to 3,2,1,0.

Static sequences These simulate a fixed head position through time, illustrat
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(a) (b) (c) (d)

Figure 7.2: Example data sequences for Alternate Frame (AF) tests with a time window of three

frames: (a) LR Training - Frames 2, 4 and 6 (b) RL training (frames 6, 4 and 2) (c) Static training

(frame 4 repeated) (d) LR Test - Frames 3, 5 and 7 of same person. Data from all 10 people in the

Sussex database was used for both training and testing, each taken from alternate frames.

Window Samples Train/Test Initial % % Discarded % after Discard

5 2550 20/20 100 5 100

4 2040 40/40 95 5 100

3 1530 60/60 100 8 100

2 1020 80/80 90 8 92

(a) 2 Classes, distinguishing LR and static sequences.

Window Samples Train/Test Initial % % Discarded % after Discard

5 2550 30/30 100 7 100

4 2040 60/60 97 8 100

3 1530 90/90 93 8 100

2 1020 120/120 83 25 96

(b) 3 Classes, distinguishing LR, RL and static sequences.

Table 7.1: Effect of time window size on generalization rates for TDRBF network trained and

tested on image sequences from alternate frames (AF testing). The test sequences contain alternate

frames from those seen during training.
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(a) (b) (c) (d)

Figure 7.3: Example data sequences for Alternate Person (AP) tests with a time window of 3 frames:

(a) LR training (frames 2, 3 and 4) (b) RL training (frames 4, 3
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Figure 7.4: The real image sequence from QMW, used to test TDRBF networks trained on se-

quences from the Sussex database. Note the wide variation in head position and gaze direction.

Time Samples Training/ Integration Layer Size (% Correct)

Window Test 1 3 5 7 9

6 3060 75/57 54 53 53 53 54

5 2550 90/58 62 62 67 64 69

4 2040 105/59 64 61 76 83 75

3 1530 120/60 63 60 73 80 78

2 1020 135/61 56 56 52 57 48
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7.3.2 Discussion

The issue of the ‘time base’ of actions, that is, how fast or slow actions occur, would have to be taken

into account in any real-life image sequences, as any movement would occur at a variety of speeds
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The tests presented in this chapter have shown that the TDRBF network has useful temporal

recognition properties, which could be of use in real-life applications, due to its rapid learning and

operation, in comparison to more general, but slower, recurrent networks.



Chapter 8

Conclusion

The aim of this thesis has been to explore the practicalities of computer-based face recognition in

everyday environments, such as living-rooms or offices. This chapter summarises the main results

and contributions from the thesis and outlines directions for future work.

Chapter 2 described the task of face recognition in unconstrained environments in detail and

drew up specific requirements to fulfill it. A review of general theories of object recognition and

psychological evidence was then followed by a more detailed discussion of current approaches to

face recognition, with specific emphasis on three aspects of the recognition process – acquisition,

representation and reasoning. This allowed us to establish a suitable approach, using filter-based
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network, previously used for speech recognition, to recognise simple image-based behaviours based

on head rotation. We were able to show that such actions can be easily learnt and generalised to

even with simple training methods.

8.1 Contributions of the Thesis

There are four main contributions made by the thesis:

1. Gabor filter representation. We have developed an efficient sparse-sampled Gabor filter repre-

sentation suitable for extraction from low resolution face images. We have been able to establish

that this can, in contrast to a Difference of Gaussians representation, provide some inherent scale

invariance (that is, without the provision of explicit scale varying images) which is not present for

other variations, such as translation (lateral shift).

2. Radial basis function (RBF) network scheme for image sequences. We have developed a fast RBF

network scheme which has been shown to provide robust generalisation when used with pose-

varying face data in image sequences.

3. Face Unit RBF network scheme. We have developed our own novel Face Unit RBF network

model that can be used either alone to classify individuals in a known group, one for each person,

or to accompany standard RBF network output for a cooperating classification.

4. Image-based Time-Delay RBF network scheme. We have established the suitability of the Time-

Delay RBF model, previously only used for speech recognition, for image analysis. We were able

to show that the network could recognise simple head-turning behaviours in image sequences in

an extension to our previous, static frame training methods.

8.2 Discussion

Section 2.1 devised four main areas of requirements for our target task: Group 1) general re-

quirements that need to be satisfied by all parts of the system, Group 2) acquisition requirements

concerned with monitoring and extraction of useful information, Group 3) face recognition re-

quirements for the recognition stage and Group 4) identity requirements which are concerned with

how the recognition information is used. As mentioned in that section, those from Group 2 are

assumed to have been previously fulfilled via existing technology and those from Group 4 are the

subject for future work.

We believe the Group 1 General Requirements, 1a and 1b, are addressed appropriately in our

RBF network scheme with filter-based preprocessing. We have been able to show rapid preprocess-

ing, training and classification (in Section 2.6) and robust generalisation of trained RBF networks

to test image sequences containing significantly different examples of everyday lighting and pose

variation (in Section 6.2.2).

For Group 3, the Face Recognition Requirements, the following requirements have been ful-

filled in the thesis (with the sections where this was demonstrated shown in brackets): 3a – Fast

learning and real-time recognition of up to 50 individuals (Section 2.6); 3b – ability to work

with low-resolution face images (Chapters 3 and 4); 3(c)i – minor translation (shift) and scale in-

variance (Section 4.3); 3(c)ii – moderate illumination invariance (Sections 3.3 and 6.2.2); 3(c)iv
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Specifically, in terms of invariance, more precise limits need to be established for the system for

translation (shift) and scale variation, and research needs to be done to establish limits on expression

and lighting variation.

As mentioned in Section 2.1, the Group 4 requirements were were not included in the frame-

work for the thesis and were to be addressed in future work. This group of requirements was

concerned with adapting the known group of individuals the system could recognise. This is ob-
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Appendix A

Face Database Information

This appendix gives specific details on the face databases used for the experimental chapters. Sec-

tion A.2.2 contains Euclidean distance comparisons for the Sussex database.

A.1 The ORL Database

The Olivetti Research Laboratory (ORL) database of faces (ORL, 1994) has been used for the initial

experiments in Section 2.6. It is valuable, as there are a wide range of published face recognition

results based on the database which can be used for comparison. It contains 400 greyscale images of

40 people at a resolution of 92�112, see Figure A.2. Each individual is represented by 10 images,

and for some, these have been taken at different times.

Variations allowed in the image included lighting, facial expressions (such as open or closed

eyes and smiling or not smiling) and facial details (such as glasses or no glasses). All the images were

taken against a plain background, with tilt and rotation up to 20�, and scale variation up to 10%.

A.2 The Sussex Database

The Sussex Database is designed to assess how the performance of a particular face recognition

technique will be affected by significant pose variations. It only contains data for ten people, which

is a relatively small number by current face database standards. However, the main purpose of the

database is not to test how many individuals a recognition system can discriminate, as there are

Figure A.1: Set of 10 images for one person in ORL database, illustrating moderate x-, y- and

z-axis rotation with expression and illumination variation.
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Figure A.2: The complete ORL Database.
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many publically-available databases that could be used for this purpose. The use of ten people is

sufficient that the task is not trivial, but not so large that computation is excessive.
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(a) Class 4, 100�100

(b) Class 4, 50�50

(c) Class 4, 25�25
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(a) Class 0, 25�25

(b) Class 1, 25�25

(c) Class 2, 25�25

(d) Class 3, 25�25
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(a) Class 5, 25�25

(b) Class 6, 25�25

(c) Class 7, 25�25
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(a) Class 2, 25�25

(b) Class 4, 25�25

Figure A.7: As for Figure A.5, but using face-centering, rather than nose-centering, for localization

of faces and only showing classes 2 and 4.

Note that this face-centering technique only attempts to fill the image with as much surface area

from the face as is possible. A true, ‘pose-free’ centering algorithm would use head mass for

localization, and the face area extracted would therefore contain the entire head.
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A.3 QMW Image Sequences

The image sequences used in the tests reported here are the re
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(a) Class
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(a) Class jon

(b) Class lorna

(c) Class sean

(d) Class steve

Figure A.15: As Figure A.14, but the second four of the eight QMW sequences.
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Figure A.16: A complete Secondary sequence for class steve, after segmentation but before pre-

processing. This shows the high level of lighting and pose variation which was designed to test the

RBF network’s generalization to conditions different to those used for training. As only front-view

face detection has been implemented at this stage, some non-face frames are included and profile

views, although segmented, are incorrectly scaled.
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Heuristic for Initial % % After

σ Values % Discarded Discard

Individual 1-NN 92 44 96
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B.1.2 Hidden Unit Activations

The (unnormalised) output u for hidden unit h (for a pattern l) uses a Gaussian function, which

can be expressed as

ul
h = exp[�

(rl
h)

2

2σ2
h

] (B.2)

where, in this case, r is the Euclidean distance:

rl
h = dE(j

l
;ch);

dE(j;c) =

s

N

∑
x=1

( jx� cx)
2
: (B.3)

This is the distance between the N-dimensional input vector j and hidden unit centre c. Note
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This is combined with two more fixed parameters which control the speed of change, η, the

learning rate, and γ, a momentum term, to give the change in weight value ∆wih

∆wl
ih = ηδl

iφ
l
h + γ∆wl�1

ih (B.8)
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Preprocessing Techniques

This appendix describes the specific implementation of the two preprocessing techniques used:
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(a) Scale 0.15 (Mask 3�3)
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Original DoG Convolved Samples

Resolution Scale Resolution per Image

100�100 1.3 90�90 8100

50�50 0.8 44�44 1936

25�25 0.4 21�21 441

12�12 0.15 10�10 100

6�6 0.15 4�4 16

Table C.1: Resolutions of face data used from the Sussex database, and the DoG preprocessing

values for each image size.

(i) (ii) (iii)

(a) full range of grey-levels

(i) (ii) (iii)

(b) reduced range of grey-levels

Figure C.3: Effect of different ranges of grey-levels for DoG preprocessing using a 25�25 image.

(i) before preprocessing (ii) after non-thresholded DoG preprocessing (iii) after thresholded DoG

preprocessing.

C.1.2 Image Grey-Level Range

The range of grey-levels present in the images can be reduced, if it is considered that the areas of
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(i) (ii) (iii) (iv) (v) (vi)

(a) 25�25 masks created from a Gabor function of period 13.

(i) (ii) (iii) (iv)
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Scheme Orientations Scales Over- Matrix Coefficients
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Number of Period Mask

Samples Size

1�1 13 25�25

2�2 7 13�13

4�4 3 7�7

8�8 1 3�3

(a) ‘A’ sampling

Number of Period Mask

Samples Size

1�1 13 25�25

2�2 10 19�19

4�4 5 11�11

8�8 3 7�7

(b) ‘B’ sampling

Number of Period Mask

Samples Size

1�1 13 25�25

2�2 9 17�17

4�4 4 9�9

8�8 2 5�5

(c) ‘C’ sampling

Number of Period Mask

Samples Size

7 4 9�9

7 3 7�7

19 2 5�5

37 1 3�3

(d) ‘D’ sampling

Number of Period Mask

Samples Size

1�1 13 25�25

2�2 7 13�13

4�4 3 7�7

(e) ‘E’ sampling

Table C.3: Sampling and filter masks used for different Gabor preprocessing schemes.

Scale Sampling Coefficients

Combination 1�1 2�2 4�4 8�8

1 � 6

2 � 24

21 � � 30

4 � 96

41 � � 102

42 � � 120

421 (E3) � � � 126

8 � 384

81 � � 390

82 � � 408

821 � � � 414

84 � � 480

841 � � � 486

842 � � � 504

8421 (A3) � � � � 510

Table C.4: Numbers of coefficients for different A3 Gabor filter scale and sampling combina-

tions: The ‘8421’ arrangement is equivalent to standard A3 sampling, ‘421’ to E3 sampling. See

Table C.3(a) for details of filter masks at each sampling level.
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