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Abstract

Second generation knowledge based systems (KBS) often incorporate multiple problem solving meth-

ods. However the decision about which method to use is very much an open problem. The control

involved in the dynamic selection of methods is considered a complex activity that requires the acquisi-

tion of speci�c knowledge and strategies. There is a need for modelling languages capable of handling,

invoking, evaluating and choosing multiple methods at run-time. There are several modelling languages

with such capabilities. With them it is possible to develop robust, more 
exible and less brittle sys-

tems. Unfortunately, those languages are not 
exible enough to cope with the behaviour of the systems

when more methods are incorporated. In this paper we propose a new modelling language which over-

comes these shortcomings. In doing this a framework is provided for reviewing the 
exibility of current

modelling languages.

1 Introduction

Second generation knowledge based systems (KBS) often incorporate multiple problem solving methods. In

some systems the methods are specialized for a particular subtask [Bylander et al. 93]. For example, the

GTD system (Generate, Test and Debug) [Simmons 93] incorporates a di�erent method for each of its main

tasks. In this kind of system the decision about which method to use is taken by the knowledge engineer at

the design stage. A number of systems provide facilities in choosing which methods to use. For example,

the COPILOTE system [Delouis 93], and a medical diagnosis system in TIPS [Punch, Chandrasekaran 93]

incorporate, as part of their problem solving, the selection of the most appropriate method for a given task.

The decision about which method to use is taken by the system itself at run-time. Finally, other systems

allow multiple methods to work on the same problem simultaneously. For example the Guardian system

[HayesRoth et al. 89].

The advantages of having multiple methods in a system have become apparent: robustness [Simmons 93],


exibility [Vanwekenhuysen, Rademakers 90], broader kind of reasoning [Delouis 93], less brittleness [Punch,

Chandrasekaran 93], reusability [Punch, Chandrasekaran 93].

The decision about which method to use is very much an open problem [Davis, Krivine 93]. The control

involved in the dynamic selection of methods is considered a complex activity that requires the acquisi-

tion of speci�c knowledge and strategies [Reinders et al. 91, Delouis 93]. Nowadays there is a need for

modelling languages capable of handling, invoking, evaluating and choosing multiple methods at run-time

[Chandrasekaran, Johnson 93].
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Figure 1: A control structure

participate in the satisfaction of the node. An OR node indicates that just one of its children is su�cient.

Such a structure may be a tangled hierarchy since a task or method can appear at several places in the tree.

In terms of the model of expertise in KADS methodology [Wielinga et al. 92] the control structure refers to

the inference layer and the task layer.

2.1 A case study, Sisyphus-92

Throughout the text the ideas are clari�ed by examples from the problem known as Sisyphus-92 (from now

on the Sisyphus problem) [Linster 91, Linster 92]. Sisyphus was a project that has aimed at comparing

di�erent approaches of knowledge modelling. Modelling of knowledge and the in
uence of those models

on the knowledge acquisition activity were the main objectives. A sample problem concerned with o�ce

assignment (resource allocation) in a research environment was provided.

The problem consisted on the allocation of some members of the research group YQT to rooms on a new


oor. This problem introduced the issue of brittleness. The main interest was to see how a model reacts to

unusual situations. In this case, an over-speci�ed problem. This problem was selected because it presents

given some interesting characteristics:

� It is a well known problem in the knowledge modelling area.

� Di�erent methods have been applied to the solution of this problem (single method approaches): a gen-

eral backtracking one (KARL [Angele et al. 92] and MODEL-K [Drouven et al. 92]), a decomposition

one (KADS-I [Schreiber 92]), a case-based (MODEL-K), and constraint-based method (MODEL-K

and CARMEN [Tong 92]).

� Those approaches embody some assumptions which makes them brittle when they are not satis�ed.

For example, the KARL approach assumes there is time and space enough to search over the complete

search space of possible allocations. The KADS approach assumes a separable problem which can

be separated into disjoint subsets whose respective solutions can be joined together later on. The

CARMEN approach assumes knowledge that may not be available (i.e.. constraints can be ordered by

importance and have associated �x knowledge -what to do in case a constraint cannot be satis�ed)
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.

� This problem presents a subset of the problems found in a most general areas such as scheduling which

can be solved with di�erent techniques such as constraint satisfaction, simulated annealing, genetic

algorithms, tabu search, repair heuristics, and so on [Prosser, Buchanan 94].
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It is interesting to note that even though all these methods were part of a single system the brittleness problem is still not

solved. It might happen that, although the problem has a solution, no method could be activated .
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components of a modelling language are:

� An object-level with its control structure and associated control knowledge.

� Meta-level objects and their properties.

� Abstract structures.

� Meta-level activities.

� A meta-level.

In the following paragraphs these components will be described although not in the same order as they

appear above. The instances are the speci�c entities in each component (i.e. methods and tasks in meta-level

objects, di�erent criteria in abstract structures).

� Control structure. There is a trend to develop modelling languages which adhere to leading method-

ologies. Following an established methodology determines the kind of entities (i.e. knowledge sources,

roles, tasks, goals, methods, basic inferences) and control structure that the systems will have. Thus,

identifying the underlying methodology of a language determines the control structure and entities.

For example, the AND/OR tree is one of the most common control structure [Delouis 93]. It is based

on hierarchical decomposition of entities (e.g.



etc. Therefore, a number of entities need to be de�ned as meta-level objects incorporating meta-

knowledge in their descriptions. Thus, it is important to answer questions such as: what kind of

objects are de�ned at that level? Are they implicit or explicit? Where and how are they described and

manipulated? Do they have a static or dynamic description?
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how a task can be solved. Two types of methods are distinguished: decomposition methods (they decompose

a task into subtasks), and action methods (they provide direct solutions for a task).

Only two meta-level activities (method related) are found in this framework: the selection and activation

of methods. In this framework the selection of methods depends on characteristics of the task such as:

knowledge availability, runtime constraints, cost of observation and so on. Thus, the dynamic selection of

methods is carried out by the satisfaction of the applicability criteria of the methods. This activity is implicit

in the language.

Its control strategy is simple. It consists of the selection of the best method and its activation. This

control strategy is implicit. All the tasks in the framework share the same control strategy.

Tasks, methods and domain knowledge are explicitly represented as objects. This makes them available

for inspection, modi�cation, or adaptation. A task is characterized by its: inputs, outputs, domain knowl-

edge, and the practical problems that occur in the domain (incompleteness of information, uncertainty, etc.).

A method is characterized by: its decomposition, control knowledge over the decomposition, and conditions

indicating when a method is applicable to a task (applicability criterion). It is not clear if such descriptions

can be extended or modi�ed.

It is not clear as well what kind of control statements and abstract structures the language provides.

In summary, this language provides an implicit and simple control strategy which can be applied to every

task in the control structure. Its objective is just to choose a method. It is based on a simple cycle applying

an applicability criterion: the �rst method that satis�es the criterion is activated.

The disadvantages that can be appreciated in this language are:

� Meta-level activities. This language does not provide facilities for any additional meta-level activity.

Therefore other activities such as method ordering and method monitoring cannot be represented.

� Control strategy. Since it has an implicit �xed control strategy it is neither possible to modify it nor

to de�ne new or speci�c strategies. For example, a strategy that iterates over the methods in case of

method failure.

� Abstract structures. TroTelC has a single abstract structure, namely the applicability criterion. There-

fore, its criterion must contain other embedded criteria (i.e. necessity, appropriateness) which make it

complex and di�cult to explain the reasons why a method cannot be selected.

3.4 TIPS

TIPS [Punch, Chandrasekaran 93] is a task-speci�c language for diagnosis that allows the development

of systems involving the integration of multiple methods and their dynamic selection. This language is a

response to the dynamic selection of methods problem in the GT approach. The TIPS approach is to provide

only enough mechanism to allow monitoring of tasks (goals in TIPS terms) and a mapping of methods that

can achieve a task. The design of those methods is outside the TIPS approach.

In TIPS the control structure consists of a task-subtask-method tree. In this tree a node can be a task

or a method. An initial task is decomposed into subtasks and so on. Only the last subtasks are carried

out by methods. Most of the tasks are de�ned as AND nodes while a few of them (named control choice

points) are de�ned as OR nodes. The control knowledge associated with the AND nodes is heuristic. The

control knowledge associated with the OR node is called a Sponsor-Selector structure. This structure is a

combination of abstract structures (applicability, appropriateness and tie-breaker criteria) and meta-level

activities (e.g. veri�cation of task satisfaction, identi�cation of special cases, ordering methods, and method

selection).

The basis for the representation of its method selection activity is the Sponsor-Selector structure. It is

a hierarchy of three elements: a selector, a set of sponsors and a method for each sponsor. Each task with

multiple methods (control choice point), has such an associated structure. At any control choice point, the
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sponsors are activated to rate their associated methods, then the selector chooses one of those methods based

on the sponsor values and other data.

Each sponsor is independently coded without taking into account other sponsors (local knowledge).

They provide a measure of the appropriateness of their associated methods (appropriateness criteria) to a

given context. The measure provided by the sponsors is a result of a pattern matching process (a table

that contains patterns associated with appropriateness measures) about two kinds of information: dynamic

method information - this describes which methods have run so far and when they ran; dynamic task

information - Its concern is task achievement. For example, has the �nding been explained? This information

is provided by the knowledge engineer.

The technique of rating methods based on an appropriateness measure is a good one since it concentrates

just on the events (set of conditions) that makes a method appropriate. It provides an ordering of the

methods for every recognized context.

The objective of a selector is then to decide what method to activate next. The criteria involved in this

decision are:

� Appropriateness measures. The highest measure wins. If no clear candidate is available and no other

criterion is available, then a random choice from the best candidates is selected. The former is an

appropriateness criterion and the latter is a tie-breaker one.

� Priority list. This is a list of methods which specify which method should be preferred in the case of

ties. It is a tie-breaker criterion.

� Pattern matching. This structure is similar to the one used by sponsors, but in this case instead of

an appropriateness measure, the name of the method is returned. It is used in special situations to

override the normal choice mechanism (categorical criterion). According to [Punch, Chandrasekaran

93] an example of this situation is when a method has been applied but not yet completed, then it

should be the next selected method. In cases where no matching occurs, the priority list is used.

There are two distinguished sponsors:
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Figure 4: Control Strategy and Control Structure in LISA

3.5 LISA

LISA [Delouis 93] is a general purpose knowledge modelling language. Its design was in
uenced by the KADS

and COMMET [Steels 90] methodologies. This language has three underlying principles: the modelling

of expertise using three perspectives - methods, problems and domain knowledge; the dynamic selection

of methods and the explicit description of activities and control knowledge intervening in the process of

selection.

In LISA the control structure is a task-method tree (a task in LISA is named a goal). A node can be a

task or a method. A task is decomposed into methods and a method into tasks or terminal methods. Tasks

are OR nodes, whereas methods are AND nodes.

LISA is a re
ective language which contains and explicit meta-level. It contains a double control structure,

one for the object-level and the other for the meta-level. In the meta-level the activities are represented

explicitly. LISA supports several meta-level activities and new ones might be de�ned. They are method

related activities. The activities identi�ed in this language are: collect methods - this collects the methods

that might achieve a task; select a method - this is in charge of selecting a method from the collected

methods; activate a method - this applies a method; results evaluation - this veri�es whether the task has

been achieved.

These activities are represented in the same terms as tasks, so, it is possible to de�ne di�erent ways to

carry them out. These ways are represented in LISA as methods. Therefore, tasks meta-tasks, methods and

meta-methods can be identi�ed.

In LISA just a single control strategy can be de�ned. It might be user-de�ned or system-provided. This

strategy is applied to every task in its two control structures. A control strategy in LISA is de�ned explicitly

in terms of tasks and methods (see �gure 4). The tasks de�ne the activities whilst the methods the ways to

carry them out. This ingenious representation allows de�nition of di�erent ways to carry out those activities.

New tasks and methods can be added, eliminated or modi�ed. Therefore, a control strategy in LISA is as



Since the construct meta-task is the most important in LISA it will be described in detail. This meta-task

is carried out by a single meta-method which has the following meta-tasks:

1. Identify possible methods. This meta-task generates a list of methods that might carry out a task. It

has three associated meta-methods:

� Collect associated methods. This activity just obtains those methods assigned on an a priori basis

to a task.

� Dynamically collect possible methods. This activity collects those methods in the system whose

results satisfy the task (called pertinent methods in LISA) and whose inputs and requirements

(applicability criteria) are available in the context (applicable methods in LISA).

� Collect non-applicable pertinent methods. This activity (known elsewhere as subgoaling) collects

non-applicable methods and generates a new activity whose goal is to activate any of those non-

applicable methods. It is used when the pertinent methods cannot be activated and so the task

cannot be satis�ed.

2. Select one method. This activity is in charge of selecting one method from the methods collected in

the previous activity. It has the following associated meta-methods:

� Select one. Used when there is only one method available.

� Select by favorable contexts or preferences. This activity eliminates from the associated methods

those whose context is not appropriate. It applies the favorable contexts criterion. This meta-

method has three sub-meta-methods to choose just one method: ask the user, use preferences

(preference lists) and at random.

3. Activate a method. This is in charge of recognizing the type of method (terminal, non-terminal or rule

based) and calling the speci�c interpreter to activate the method.

4. Evaluate the success of a method. This activity veri�es whether the task has been achieved and whether

the results of the method are of the expected quality.

Tasks and methods are the only entities considered meta-level objects. They have an explicit description

which consists of prede�ned sets of properties. Most of them are abstract structures. The abstract structures

identi�ed in this language are: criterion of success - this is a satisfaction criterion; favorable contexts - this

is an appropriateness criterion; associated methods - a list of methods that are known to satisfy a task;

preferences - this is tie-breaker criterion.

In summary, it can be said that LISA is a language that allows the explicit description of control strategies

which can be adapted for each application (just the explicit one). Each activity in the control strategy might

be carried out in di�erent ways. New activities can be incorporated into the control strategy. The control

strategy in LISA basically consists of four method related activities: method collection, method selection,

method activation, and evaluation of methods' results. These activities are controlled using a task-method

control structure.

The disadvantages that can be appreciated in this language are:

� Control strategy. In LISA there is only a single control strategy associated with tasks in both levels.

The language has been designed to apply the same control strategy to every task in the system. Thus,

a speci�c task cannot have its own control strategy. The control strategy needs to be too general to

satisfy any possible task requirement or to have dedicated activities for speci�c tasks.

� Meta-level objects. The meta-level objects in LISA have a �xed description. This means that it is not

possible to add new properties or abstract structures to them. Thus, when an extra property is needed

in an activity it has to be included implicitly by means of symbol-level constructs (Lisp predicates).

This represents a shortcoming in those cases in which the methods involved can only be di�erentiated

by those additional properties. For example, in those cases in which there is a trade-o� between time

and space.
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� Control knowledge. In LISA there is a lack in the language with respect of control in the method

decomposition. Lisp code is used instead which implies that such representations are not fully at the

knowledge level.

3.6 Discussion

After reviewing a number of modelling languages some disadvantages can be summarized:

� Some of those languages have concentrated almost exclusively on the dynamic selection of methods

ignoring basic method related activities such as diagnosis and repair, and competence assessment.

� In most languages, the meta-level objects are characterized by a �xed number of descriptors, namely

inputs, outputs and requirements. This represents a shortcoming since the addition of new methods

might require the use of new descriptors to di�erentiate those methods. For example, important

properties such as how many solutions can a method provide, or completeness

7
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In summary, it could be said that current languages provide environments for de�ning single control

strategies with a few meta-level activities and a few abstract structures in which no assumptions are con-

sidered and the separation of methods is required (addition of methods only at upper levels in the control

structure).

4 MML - Multiple Method Language

The MML is a task-independent modelling language for the explicit representation of systems with 
exible

control strategies which allow dynamic selection of methods. MML is being designed as an initiative to

overcome the above mentioned shortcomings, as well as to easy the representation and acquisition of the

knowledge, activities and control strategies involved in such systems.

This approach has been in
uenced by the languages LISA [Delouis 93] and TIPS [Punch, Chandrasekaran

93], and the methodologies KADS [Wielinga et al. 92] and Generic Tasks [Chandrasekaran 90]. In fact it

can be said that MML is a generalization of LISA and TIPS. The underlying ideas of this approach are:

� A modelling language should be a re
ective language in which instances of the components mentioned

in Section 3.1 can be de�ned.

� At the same time, the underlying architecture should be open ended in order to allow the addition of new

instances or instances with extended or modi�ed descriptions. This facility represents a generalization

from current approaches.

� The objects in the system should be described not just in terms of their features (properties and abstract

structures) but also in terms of how those properties are used (activities and control strategies).

� A general modelling language should be meta-task speci�c. It means that it should provide some

primitives meta-level activities for speci�c groups (i.e. method selection, explanation, monitoring).

For example it might have method related meta-level activities primitives.

� Brittleness might be reduced not just by providing multiple methods and the capability for their

dynamic selection but also, incorporating a number of other method related activities

8
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monitoring the development of the execution of the method, fault diagnosis and repair, analysis of

results (e.g., quality, quantity), etc. Thus, a language for the speci�cation of second generation expert

systems should be capable of representing and
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associated (on a priori basis) methods that are known to satisfy its goal. Among the properties that a task

might have, the following are the most common: goal, input, output.



[define decomposition

properties:

[type method]

[goal 'To allocate components into resources using ...']

[input components resources]

[output allocations]

[m-type non-terminal]

[ck-type procedural]

[backtracks false]

[structure assemble-plan assign-resources]

abstract structures:

[applicability-criteria

components-value exist and

resources-value exist ]

[appropriateness-criteria

a-plan exist and

is-a-separable-problem exist ]

[code debug("m", 'Executing decomposition');

getdomain( "components", "value") -> Components;

getdomain( "resources", "value") -> Resources;

for Res in Resources do

putdomain("store", "allocations", Res, []);

endfor;

...]

activities:

[applicable eval-boolean]

[apply-method call-method]

control strategy:

% [decomposition-strategy apply-method with code]

].

Figure 6:



conceptual, operational, dynamic and other. The conceptual properties describe the knowledge the method

use. The operational ones describe how the method carries out a goal. It includes basically the methods'

decomposition into subtasks or sub-methods. The dynamic properties describe the status of a method at

run-time. They are mainly modi�ed by the interpreter of the system. For example, the number of times that

it has been activated. Finally, other properties describe



5 Conclusions

This paper has proposed a framework for analyzing modelling languages, with particular emphasis on use

of multiple methods. This framework identi�es the following as important components of second generation

expert systems: an object- and a meta-level, meta-level objects, abstract structures, and meta-level activities.

We reviewed the languages: MODEL-K [Karbach, Vo� 92], TroTelC [Vanwekenhuysen, Rademakers 90],

TIPS [Punch, Chandrasekaran 93], and LISA [Delouis 93]. The following features were noted:

� Current modelling languages provide a range of components' instances that goes from a few (MODEL-

K) to many (LISA).

� Although according to their authors, more robust, more 
exible, or less brittle systems might be

developed, those languages are not 
exible enough. Their components are �xed, namely: a �xed set of

properties and abstract structures; a �xed set of meta-level activities; or, a single control strategy for

handling those activities.

� Some of those languages have concentrated almost exclusively on the dynamic selection of methods

ignoring meta-level activities such as diagnosis and repair, and competence assessment, which are very

important related activities.

� They have concentrated on the use of general methods. They do not provide any support for repre-
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