
A Process Algebra for Timed Systems

�

Matthew Hennessy, Tim Regan

University of Sussex

Abstract: A standard process algebra is extended by a new action � which is meant to

denote idling

very descriptive languages with which one may describe the minutiae of detailed timing

considerations in complex systems. Such languages are certainly required but there are

certain applications, those in which time plays a restricted role, for which these lan-

guages may be inappropriate because the descriptions may be unnecessarily complex.

Our proposal is quite modest: we wish to make a relatively minor extension to a stan-

dard process algebra with a mathematically simple notion of time which, although not

universally applicable, will be su�ciently useful in particular application areas such as

protocol veri�cation. Protocols are a typical example of systems where timing consider-

ations a�ect the behaviour of only a small part of the overall system. Our language is

designed so that speci�cation of the time-independent part of the system may be carried

out as usual while the time-dependent part may be treated with our time-based exten-

sion. We hope that by introducing a simple notion of time many of the characteristics

of standard process algebras which have made them so successful will still be retained in

the enlarged setting. In particular we wish to extend the semantic theory of processes

based on testing, [He88], to a setting where time plays a signi�cant role. From a method-

ological point of view it seems appropriate to start with a language in which the concept

of time is rather simple.

The idea is to introduce into a standard process algebra, CCS, a � action. The

execution of this � action by a process indicates that it is idling or doing nothing until

the next clock cycle. This action will share many of the properties of the standard actions

of CCS but because it represents the passage of time it will be distinguished from the

standard actions by certain of its properties. For example in our process algebra this

action will be deterministic in the sense that a process can only reach at most one new

state by performing � . This is a re
ection of the assumption that the passage of time is

deterministic. There is also an intuitive assumption underlying the usual (asynchronous)

theories of process algebras, such as CCS as expounded in [Mil89] and CSP as expounded

in [Hoa85], that all processes may idle inde�nitely and the semantic theory is formulated

in terms of the actions which a process may perform, if it so wishes. Indeed, this view

of processes is investigated in detail in [Mil83]. We continue to use this assumption;

using the syntax of CCS, the process a:p can idle, i.e. it can perform a � action.

This means that we assume all processes are patient in that they will wait inde�nitely

until communications in which they can participate become possible. Moreover this

means that the implicit assumption underlying CCS that all communication actions are

instantaneous is retained in our language since we have a distinguished action � denoting

the passage of time and, as we will see, all other actions are performed in between

occurrences of this time action. However, we add one further assumption, namely that

communications must occur if they are possible: a process cannot delay if it can perform

a communication. This we call the maximal progress assumption, [HdR89], which is a

common feature of many proposed timed process algebras. So, again using the syntax

of CCS, although a:p + b:q can idle, (a:p+ b:q)ja:q cannot idle; the communication via

the a

1. discrete time: in our language time proceeds in discrete steps represented by oc-

currences of the action �,

2. time determinism: we assume that the passage of time is deterministic,

3. actions are instantaneous: time is not associated directly with

passage of time. An intuition for this is that if a process is o�ering an action a

which is requested by another process by the o�er of an action a, we do not want

unspeci�ed delay to occur; the communication, the � move, must �re immediately.

� �:. The passage of time is modelled in our system by an occurance of a � action.

As discussed in the introduction this represents a relatively abstract notion of time

but it can be intuitively thought of as the click of a clock which measures the

passage of time for the system. We chose � as the symbol to represent the passage

of time because of its similarity to Phillips `broadcast stability operator' of [Ph87].

� +. Deterministic and nondeterministic choice between two processes is modelled

in CCS by the operator +. For actions a in Act and the action � the operator +

behaves in the same way as it does in the CCS setting. The di�erence comes with

the action � . If two processes are just idling before the environment requests one

of them the choice between them will not be made by the passage of time alone.

That is to say that + is not decided by the action � . This is necessary to ensure

that the passage of time is deterministic.

� b c(). This operator comes from the process algebra ATP put forward in [NRSV92].

It is similar to the context + �:�:

ACT

1

:

�:p

�

�! p

SUM

1

:

p

�

�! p

0

p + q

�

�! p

0

SUM

2

:

q

�

�! q

0

p+ q

�

�! q

0

THEN

1

:

p

�

�! p

0

bpc(q)

�

�! p

0

COM

1

:

p

�

�! p

0

pjq

�

�! p

0

jq

COM

2

:

q

�

�! q

0

pjq

�

�! pjq

0

COM

3

:

p

a

�! p

0

; q

a

�! q

0

pjq

�

�! p

0

jq

0

REL

1

:

p

�

�! p

0

p[S]

S(�)

�! p

0

[S]

RES

1

:

p

�

�! p

0

; � 62 fb; bg

p n b

�

�! p

0

n b

REC

1

:

t[recx:t=x]

�

�! p

0

recx:t

�

�! p

0

Figure 1: Standard Operational Semantics

to delay until the next time cycle. Similarly, nil may delay inde�nitely as it can never

perform a communication. Note, however, that �:p cannot delay; it

ACT

2

:

a:p

�

�! a:p

NIL :

nil

�

�! nil

WAIT :

�:p

�

�! p

SUM

3

:

p

�

�! p

0

; q

�

�! q

0

p+ q

�

�! p

0

+ q

0

THEN

2

:

p 6

�

�!

bpc(q)

�

�! q

COM

4

:

p

�

�! p

0

; q

�

�! q

0

; pjq 6

�

�!

pjq

�

�! p

0

jq

0

REL

2

:

p

�

�! p

0

p[S]

�

�! p

0

[S]

RES

2

:

p

�

�! p

0

p n a

�

�! p

0

n a

REC

2

:

t[recx:t=x]

�

�! p

0

recx:t

�

�! p

0

Figure 2: Operational Semantics for �

2

Example 2.2 The process Egg

1

is de�ned so that if left too long before eating the egg

MAY be unhealthy (and may not).

Egg

1

(eat:healthy:nil+ �:�:eat:unhealthy:nil:

The process Egg

2

is de�ned so that if left too long before eating the egg WILL be

unhealthy.

Egg

2

(beat:healthy:nilc(beat:healthy:nilc(eat:unhealthy:nil))

2

Example 2.3 A \leaking counter" de�ned informally as

C

0

(= press:up:C

1

C

n+1

(= press:up:C

n+2

+ �:down:C

n

:

It can perform on up action each time it is pressed but if no press is forthcoming before

the next clock cycle it can perform a down action. So, for example, (C

0

jpress

k

) n press

acts like the process up

k

:(�:down)

k

. 2

7

Some of the informal assumptions underlying the design of the language which we

discussed in the introduction can now be seen to be re
ected in the operational semantics.

This is the import of the following proposition:

Proposition 2.4

1. (Time-determinism) if p

�

�! q and p

�

�! q

0

then q and q

0

are syntactically the

same

2. (Maximal progress) if p

�

�! q then p

�

�! r for no process r

Proof: By induction on the length of the proof of p

�

�! q, p

�

�! q respectively. 2

The informal assumption of patience is not as straightforward to capture. Intuitively

this should state that if a process p can not perform a � action then it must be able

to delay, i.e. perform a � action. But because of the presence of recursive de�nitions

the situation is more complicated. For example the processes recx:x and
 can perform

no action whatsoever. Intuitively these terms represent under-de�ned or \badly de�ned

processes" and therefore they require special attention. Terms which intuitively represent

well-de�ned processes are captured in the following de�nition:

De�nition 2.5 (Strong Convergence)

Let # be the least (post�x) predicate over TPL which satis�es

i) nil #; �:p #; �:p #

ii) p # implies (bpc(q)) #; (pjq) #; p n a #; p[S] #;

iii) p #; q #; implies (p + q) #;

iv) t[recx:t=x] # implies recx:t # :

2

We write p " to denote the negation of # and one can check that, for example,
 "

and recx:x ". With this new notation we can now see how patience is re
ected in our

operational semantics.

Proposition 2.6 (Patience) If p # and p

�

�! q for no process q then there exists a

process r such that p

�

�! r

Proof: By induction on the proof that p #. 2

We now turn our attention to the de�nition of a behavioural preorder between pro-

cesses. We follow the approach of [He88] which is based on testing and for convenience

we only consider the \must" case. However, because TPL is an extension of CCS, the

de�nitions we employ will be based on those from [dNH84] where the predicate # plays

a necessary role. A test e is a process from TPL which may additionally use the special

action ! for reporting success. A test e is applied to a process p by \running" the process

8

ejp, i.e. allowing it to evolve via � actions or � actions. Speci�cally a computation from

ejp is a maximal sequence (which may be �nite or in�nite) of the form

ejp = e

0

jp

0

7! e

1

jp

1

7! : : : 7! e

i

jp

i

7! : : : (where 7!=

�

�! [

�

�!)

To say when such an application is a success we need the notion of strong convergence

de�ned above.

We say p must e if in every computation from ejp,

ejp = e

0

jp

0

7! ::: 7! e

k

jp

k

7! : : :

there exists some n � 0 that e

n

!

�! , i.e. e

n

can report success, and for every k; 0 �

k < n e

k

jp

k

#. Finally, we say that

p

<

�

q

if for every test e, p must e implies q must e. We use

�

�

to denote the kernel of this

preorder.

The de�nition of

<

�

is close to that employed in [dNH84] and, therefore, if we restrict

both the processes and the tests to CCS the resulting theory is exactly that developed

in [dNH84]. However here we also allow occurrences of � in the tests and these new

tests, even when applied to CCS terms, i.e. terms not involving the timing constructs

� and b c(), have more distinguishing power than standard CCS tests. An interesting

di�erence in the power � vests in testing languages can be found in [La89]:

Example

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

teaco�ee

coin

coin

tea co�ee

hit

hit

hit

hit

co�eetea

coin
coin

tea co�ee

Figure 3: Langerak's Vending Machines

3 Alternative Characterisation

In this section we look at an alternative characterisation ofof

with 1 � k where s

i

2 (Act[�)

�

and each A

i

is a �nite subset of Act. These barbs may

be compared using the following order:

De�nition 3.2 � is the least preorder over barbs which satis�es

1.
� b

The r superscript in this de�nition stands for regular since, although this ordering

serves as an alternative characterisation for CCS (as the next theorem states), it is

inadequate for TPL. We will need to restrict our attention to a specialisation of barbs

to obtain an alternative characterisation of TPL. The reason for this is that any stable

CCS process may perform a � action to itself whereas this is not true in TPL (e.g.

ba:nilc(b:nil)). It is also worth pointing out that this de�nition di�ers from that in

[HR90]. There the de�nition of�

r

is de�ned in terms of the preorder < and convergence

of processes over barbs, a concept we have not de�ned. We prefer here to de�ne �

r

in

terms of the sets of barbs alone. This substantially reduces the amount of work involved

in checking the equivalence of processes in next section's soundness proof.

Theorem 3.4 (Alternative Characterisation for CCS) For p,q in CCS, p

<

�

q if and

only if p�

r

q: 2

It is worth pointing out that this theorem is not true if we restrict Barb(p) to simple

barbs, i.e. those where each sequence s

i

is of length at most one. For example, let p

denote the process d:(a:nil+c:niljc:nil)nc. Then both p and d:nil have exactly the same

simple barbs, namely pre�xes of "

Proof: Let us assume p � q and p must e. We prove q must e by examining an

arbitrary computation from ejq:

C � ejq = e

0

jq

0

7! e

1

jq

1

7! : : : e

i

jq

i

7! : : : (1)

Each move 7! may either be

�

�! or

�

�! and let us concentrate on the former. Then

(1) may be rewritten in the form

C � ejq = e

0

jq

0

�

�!

�

f

1

jr

1

�

�!

�

�!

�

f

2

jr

2

: : : e

i

jq

i

�

�!

�

�!

�

: : : (2)

where each f

i

jr

i

corresponds to some e

j

jq

j

, j � 1. Note that this sequence of f

i

jr

i

's

may be �nite even if the origional sequence is in�nite. Now this computation may be

\unzipped" to reveal the contributions from the test and process:

q

0

s

1

=) r

1

�

�!

s

2

=) r

2

�

�! : : :

e

0

s

1

=) f

1

�

�!

s

2

=) f

2

�

�! : : : (3)

For the moment let us assume that each e

i

in the computation is strongly convergent.

This allows us to concentrate on the derivation from q

0

Since p

Lemma 3.7 For every standard barb b and for every �nite L � Act such that Sort(b) �

L if Sort(p) � L then

p m6 ust e(b; L), 9a 2 SBarb(p) a� b:

Proposition 3.8 For p,q in TPL p

<

�

q implies p � q.

Proof: We prove the contrapositive, namely :(p � q) implies :(p

<

�

q). If p � q is

not true then for some standard barb b 2 SBarb(q) b

0

� b for no b

0

in SBarb(p). In this

case we employ the Lemma 3.7 where L is chosen so as to contain both of the �nite sets

Sort(p) and Sort(q). 2

Combining these two propositions we immediately have the Alternative Characterisa-

tion Theorem for TPL. As a direct corollary to this we can restrict the experimenters

considered with no change to the discriminatory power.

De�nition 3.9 An F-test f is a TPL experiment of the following recursively de�ned

form.

� f = �:!.

� f = b

P

A

a:!c(nil).

� f = �:! + a:f

0

, where f

0

is an F-test.

� f = b

P

A

a:!c(f

0

), where f

0

is an F-test.

2

Lemma 3.10 For any TPL processes p,q p

<

�

q if, and only if, for all F-tests f p must f

implies q must f

Proof: We have proved above that p

<

�

q , p � q. The proof of Lemma 3.7 then

gives that we need only consider F-tests. 2

With this alternative characterisation it is now relatively straightforward to compare

processes with respect to

<

�

. As an example we return to Example 2.7. We can

distinguish the two vending machines with the barb coinftea; hitg�hitfteag which is a

standard barb of the second process unmatched by one from the �rst. The alternative

characterisation also enables us to prove the characterisation of

<

�

c

promised in the

previous section.

Theorem 3.11

p

<

�

c

q , p

<

�

+

q:

Proof: It is su�cient to show that

<

�

+

is respected by all the operators. We leave

the individual proofs, which are quite tedious to the reader but we should point out the

proof for the restriction operator requires some care. 2

15

x+ x = x +1 �:x+ x = �:x �1

x+ y = y + x +2 �:x+ y = �:(�:x+ y) �2

x+ (y + z) = (x+ y) + z +3 a:x+ a:y = a:(�:x+ �:y) �3

x+ nil = x +4 �:x+ y � �:x �4

�:x+ �:y � �:(x+ y) �5

nil n a = nil res1 nil[S] = nil rel1

�:x n a = nil res2 (�:x)[S] = S(�):x[S] rel2

� 2 fa; ag

�:x n a = �:(x n a) res3 (x+ y)[S] = x[S] + y[S] rel3

� 62 fa; ag

(x+ y) n a = x n a+ y n a res4

bxc(y) n a = bx n ac(y n a) res5 bxc(y)[S] = bx[S]c(y[S]) rel4

�:
 =

1
 n a =

4

x+
 =

2
[S] =

5

xj
 =

3 b
c(x) =

6

Figure 4: The Inequation System E

We write p � q to say that p and q aT-16000(Inequation
11.7602 0>nInequa0v)20>nI98()]TJ
/R84 0.24 congID nt.2031 0 T202 Td
(b)Tj83equ2R64 0.2
9.6De�ni]TJ
/j
/R2 0.24 Tf
-344.2.24 149202 Td
(b) 0.0.24 Tf
8.6Observ

�:x = bnilc(x) �1

a:x = ba:xc(a:x) �2

bbxc(y)c(z) = bxc(z) �3

bxc(y) + buc(v) = bx+ uc(y + v) �4

b�:xc(y) = �:x ��1

�:bxc(y) = �:bxc(�:y) ��2

x+ �:byc(z) � �:bx+ yc(z) ��3

x =

P

I

�

i

:x

i

y =

P

J

j

:y

j

xjy =

P

I

�

i

:(x

i

jy) +

P

J

j

:(xjy

j

) +

P

�

i

=

j

�:(x

i

jy

j

) e1

x = b

P

I

�

i

:x

i

c(x

�

) y = b

P

J

j

:y

j

c(y

�

)

xjy = b

P

I

�

i

:(x

i

jy) +

P

J

j

:(xjy

j

) +

P

�

i

=

j

�:(x

i

jy

j

)c(x

�

jy

�

) e2

Figure 5: Extra Inequations for System E

Lemma 4.3 For any TPL processes p and q

p � q) p � q) p

�

�

q:

Proof: The �rst implication is straightforward and to show the second it is su�cient

to prove prove that for any F-test f p m6 ust f and p � q implies q m6 ust f by induction

on the size of f . This we leave to the reader. 2

We can now consider the soundness of most of our equations with respect to these

congruences. The laws +1;+2;+3; and +4 are called the monoid laws (although com-

mutativity idempotence is not required of monoids). In [Mil90] they are shown to be

sound with respect to �. The equations res1; res2; res3; res4; rel1; rel2; rel3; and e1 are

also discussed there. Note that this does not necessarily imply that these laws are sound

over TPL. For example in [Mil90] x + y � y + x follows since x + y

�

�! z can only be

the result of x

�

�! z or y

�

�! z but not both. We would also have to consider the case

where x

�

�! x

0

and y

�

�! y

0

implying x+ y

�

�! x

0

+ y

0

. However these extra cases

are straightforward to check.

We can justify many more of our equations in terms of derivation and observation

congruence. The equations �1; : : : �4; ��1 and e2 are all true of �. As examples we

consider the two equations �4 and e2.

18

� If x = b

P

I

�

i

:x

i

c(x

�

) and y = b

P

J

j

:y

j

c(y

�

) then xjy = b

P

I

�

i

:(x

i

jy)+

P

J

j

:(xjy

j

)+

P

�

i

=

j

�:(x

i

jy

j

)c(x

�

jy

�

). We examine wait transitions �rst. For the left hand

side these can only be the result of COM

4

which can only be applied when

x

�

�! x

0

, y

�

�! y

0

and xjy 6

�

�!. THEN

2

translates this �rst two condi-

tions into � 62 (f�

i

: i 2 Ig [f

j

: j 2 Jg) giving x

�

�! x

�

and y

�

�! y

�

.

The third condition implies (by COM

3

) that f�

i

: i 2 Ig \ f

j

: j 2 Jg = ;.

These conditions also imply b

P

I

�

i

:(x

i

jy) +

P

J

j

:(xjy

j

) +

P

�

i

=

j

�:(x

i

jy

j

)c(x

�

jy

�

)

is b

P

I

�

i

:(x

i

jy) +

P

J

j

:(xjy

j

)c(x

�

jy

�

) and by THEN

2

we have b

P

I

�

i

:(x

i

jy) +

P

J

j

:(xjy

j

)c(x

�

jy

�

)

�

�! x

�

jy

�

. The other moves are derived for the left hand

side by COM

1

, COM

2

, and COM

3

and for the right hand side by THEN

1

. We

examine only one case in detail. Suppose xjy

a

�! x

a

jy by COM

1

. Then by re-

peated use of SUM

1

we have

P

I

�

i

:(x

i

jy)+

P

J

j

:(xjy

j

)+

P

�

i

=

j

�:(x

i

jy

j

)

a

�! x

a

jy.

THEN

1

then gives desired move from the right.

The axioms �1, ��2,
1,
4, and
5 are all true of observational congruence. The

only non-trivial axiom to check is ��2 which relates the congruence to stability: for

any two processes p, q �:bpc(q) and �:bpc(�:q) are obviously observationally equivalent

because bpc(q) and bpc(�:q) are

� x + �:byc(z) � �:bx+ yc(z). We examine b 2 SBarb(�:bx+ yc(z)). If b =
 then

either x * or y * giving (x+ �:byc(z)) * and
 2 SBarb(x+ �:byc(z)). If b = ab

0

then either x

a

�! x

0

with b

0

2 SBarb(x

0

) or y

a

�! y

0

with b

0

2 SBarb(y

0

). In

either case b 2 SBarb(x+ �:byc(z)). Otherwise b = A�b

0

. There are three cases to

consider.

{ x

�

=) x

0

with A = S(x

0

) and b 2 SBarb(x

0

). Then x + �:byc(z)

�

=) x

0

and

b 2 SBarb(x+ �:byc(z)).

{ y

�

=) y

0

with A = S(y

0

) and b 2 SBarb(y

0

). Then x + �:byc(z)

�

=) y

0

and

b 2 SBarb(x+ �:byc(z)).

{ A = S(x) [S(y) and b

0

2 SBarb(z). Then S(y)�b

0

2 SBarb(x+ �:byc(z))

with S(y)�b

0

� A�b

0

.

De�nition 4.6 The depth of a �nite process d written jdj is de�ned structurally as

follows.

� j
j = jnilj = 0.

� ja:dj = 1 + jdj.

� j�:dj = jdj.

� j�:dj = jdj.

� jd + ej = maxfjdj; jejg.

� jbdc(e)j = maxfjdj; jejg.

� jdjej = jdj + jej.

� jd n aj = jdj.

� jd[S]j = jdj.

2

The depth of a term is supposed to represent the maximum length of a trace from

that term, ignoring � and � actions. To avoid complication jd n aj is de�ned as jdj

when obviously it could be much less. The reason for ignoring � comes from the line

jbdc(e)j = maxfjdj; jejg. If we replace this with the perhaps more intuitive jbdc(e)j =

maxfjdj; 1 + jejg (and adjust j�:dj accordingly) it is di�cult to see how to construct a

normal form from the choice between the two normal forms

P

A

a:n

a

and b

P

B

b:m

b

c(m

�

)

without possibly increasing the overall depth. Normalisation will be performed using

the following measure.

De�nition 4.7 The measure � is the preorder de�ned by

1. jdj < jf j or

2. jdj = jf j and M

�

(d) < M

�

(f) where M

�

(p) denotes the number of occurences of

the constuct b c() in p.

We write d � f when either d � f or jdj = jf j and M

�

(d) = M

�

(f), that is when neither

the depth or M

�

are greater in d than f . 2

The following fact is used repeatedly when normalising a �nite term and so is dealt

with separately.

Lemma 4.8 For �nite sets of normal forms fp

a

: a 2 Ag and fq

b

: b 2 Bg (A;B � Act)

there exists normal forms r

c

such that

P

A

a:p

a

+

P

B

b:q

b

=

E

P

A[B

c:r

c

and

P

A[B

c:r

c

�

P

A

a:p

a

+

P

B

b:q

b

.

Proof: We �rst show by a case analysis on n that if n is a normal form then there

exists a normal form n

0

such that

22

1. n

0

=

E

�:n.

2. n

0

� n.

This in turn is used to show that if n

1

and n

2

are normal forms then there exists a normal

form n

3

such that

1. n

3

=

E

�:n

1

+ �:n

2

.

2. n

3

� �:n

1

+ �:n

2

.

This is proved by induction on the depth of n

1

+ n

2

. The proof of the result is now

� nf(p) =

E

P

A

a:p

a

+

P

I

�:p

i

, nf(q) =

E

P

B

b:q

b

+

P

J

�:q

j

.

p + q =

E

nf(p) + nf(q)

� d � b

P

A

a:d

a

c(d

�

); q � b

P

B

b:q

b

c(q

�

)

Firstly we prove that n

�

�

E

q

�

. d

�

�

c

q

�

follows directly from the �-property,

Part 3 of Lemma 4.14 and so by induction we have d

�

�

E

q

�

.

Now we prove

P

A

a:d

a

�

E

P

B

b:q

b

. Any barb bv 2 SBarb(q) must be matched by

one in SBarb(d) so B � A. Any barb B�v 2 SBarb(q) must be matched by one

in SBarb(d) so A � B i.e. A = B. Also for all a 2 A d

a

� q

a

. For consider

v 2 SBarb(q

a

). Then av 2 SBarb(q) and so by d �

c

q we have au 2 SBarb(d)

with au� av. Hence u� v with u 2 SBarb(d

a

). By the � -preservation propery,

Part 1 of Lemma 4.14 d

a

� q

a

) �:d

a

�

c

�:q

a

and so by induction for all

a 2 A �:d

a

�

E

�:q

a

. Hence for all a 2 A a:�:d

a

�

E

a:�:q

a

and so

P

A

a:�:d

a

�

E

P

A

a:�:q

a

which, by �3 gives

P

A

a:d

and

2

{ I 6= ;.

This last case is the most complicated and we will go through it in some

detail. Here d is an unstable normal form and therefore by Lemma 4.11 we

may assume d is a strong normal form.

d �

X

A

a:d

a

+

X

I 6=;

�:d

i

where d

i

=

(

P

B

i

b:d

i

b

or

b

P

B

i

b:d

i

b

c(d

�

)

with for each B

i

we have B

i

� A and �:d

a

+ �:d

i

a

=

E

�:d

i

a

for any a 2 B

i

\A.

Further by the stability property, Part 2 of Lemma 4.14, we may assume that

q �

X

C

c:q

c

+

X

J 6=;

�:b

X

E

j

e:q

j

e

c(q

j

�

):

First let us concentrate on the terms c:q

c

. It is easy to establish that C � A

and for each c in C d

c

� q

c

and therefore from � -preservation �:d

c

�

c

�:q

c

. By

induction we have �:d

c

�

E

�:q

c

and therefore c:d

c

�

E

c:q

c

. This means that

for each such c d �

E

d+ c:q

c

and, because of �4, to complete the theorem it is

su�cient to prove d �

E

d+�:b

P

J

� jI

0

j > 1.

We suppose without loss of generality that I

0

=

&%

'$

A

&%

'$

D

&%

'$

C

&%

'$

B

�

�

�

�

�

�

�3

Q

Q

Q

Q

Q

Q

Qs

�

�

�

�

�

�

�*

�

�

�

�

�

�

��

H

H

H

H

H

H

Hj

H

H

H

H

H

H

HY

t t

t t

t t

t t

t

t

t

t

tt

a b

mess

ur

ad

mess

ur

db

ack

bc

ack

ca

mess

r

ac

mess

r

cb

Accept:

A(a:mess

ur

ad

:(ack

ca

:ack

ca

:A+ �:mess

r

ac

:ack

ca

:A)

Reliable Medium:

C (mess

r

ac

:mess

r

cb

:C + ack

bc

:ack

ca

:C

Unreliable Medium:

D (mess

ur

ad

:(�:D + �:mess

ur

db

:D)

Transmission:

B (mess

ur

db

:ack

bc

:b:ack

bc

:B +mess

r

cb

:b:ack

bc

:B

System((AjBjCjD) n S where S = Sort(A)[Sort(B)[Sort(C)[Sort(D) n fa; bg

The message is received by the protocol on port a. This is done at the module A,

\Accept". A then sends the message to the unreliable medium, D, along port mess

ur

ad

.

D now either passes the message on to the �nal module of the protocol (B, \Trans-

mission") along port mess

ur

db

, or it losses the message. Upon the possible receipt of the

message from D, B will send an acknowledgement to A via the reliable medium along

ports ack

bc

and ack

ca

. If A does not receive this acknowledgement, then D has lost

the message and after one time unit A will retransmit it to the reliable medium along

port mess

r

ac

. This is then passed onto B by the reliable medium, C, along port mess

r

cb

.

When the environment has accepted transmission of the message from B an acknowl-

edgement is sent to A so that it can reset and be ready to receive another message.

This �nal point avoids A receiving a second message before the delivery of the �rst. So

in the summand mess

ur

db

:ack

bc

:b:ack

bc

:B of B the �rst ack

bc

represents the acknowledge-

ment \message received over unreliable medium, do not resend" whilst the second ack

bc

represents \message delivered to environment, reset to accept a new message".

We can now prove equationally that

System = a:(�:�:b:System+ �:b:System)

System = (AjBjCjD) n S by definition

= a:(mess

ur

ad

:(ack

ca

:ack

ca

:A+ �:mess

r

ac

:ack

ca

:A)jBjCjD) n S by d1

= a:�:((ack

ca

:ack

ca

:A+ �:mess

r

ac

:ack

ca

:A)jBjCj(�:DCur

db

:D))CS by d1

=

a:((ack

ca

:ack

ca

:A+ �:mess

r

ac

:ack

ca

:A)jBjCj(�:DCur

db

:D))S by d5

=

a:(X

w =

P

A

a:w

a

; x =

P

B

b:x

b

; y =

P

C

c:y

c

; z =

P

D

d:z

d

(wjxjyjz) n E = ext+ int

where

ext =

P

AnE

a:((w

a

jxjyjz) n E) +

P

BnE

b:((wjx

b

jyjz) n E)+

P

CnE

c:((wjxjy

c

jz) n E) +

P

DnE

d:((wjxjyjz

d

) n E)

int =

P

A\B

�:((w

a

jx

b

jyjz) n E) +

P

A\C

�:((w

a

jxjy

c

jz) n E)+

P

A\D

�:((w

a

jxjyjz

d

) n E) +

P

B\C

�:((wjx

b

jy

c

jz) n E)+

P

B\D

�:((wjx

b

jyjz

d

) n E) +

P

C\D

�:((wjxjy

c

jz

d

) n E) d1

w =

P

A

a:w

a

+ �:w

= �:�:((ack

ca

:ack

ca

:A+mess

r

ac

:ack

ca

:A)jBjCjD) n S by d2

= �:�:�:(ack

ca

:AjBjmess

r

cb

:CjD) n S

6 Related Work

There is now an extensive literature on timed process algebras which can be classi�ed

from many di�erent viewpoints. For a general discussion on the varieties of timed pro-

cess algebras the reader is refered to [Je91] but from the purely syntactic level they can

be viewed as extensions of the three main process algebras, ACP, CSP and CCS, each

of which represent three somewhat di�erent approaches. For example [BB89] presents

a real-time extension of ACP, [Re88] contains an extension of CSP called Timed CSP

while CCS is the starting point for [MT90a] where the process algebra TCCS is de�ned.

Moreover the starting point determines to some extent the type of work reported in

these papers. In [Re88] a denotational model for Timed CSP is presented, re
ecting the

fact that much of the work on CSP is based on a denotational approach to semantics.

Similarly the concern of the ACP school of semantics with algebraic theories in
uences

the approach taken in [BB89] while the operational viewpoint, which underlies much of

the research on CCS is re
ected in [MT90a]. However in subsequent work by researchers

from these schools this distinction is much less clear. For example in [Gr89] an opera-

tional semantics is given to a real-time extension of ACP while in [Sch91] Timed CSP is

considered from the operational point of view of testing.

It is perhaps more fruitful to classify the di�erent approaches by their view of time

and the way it is represented semantically. Here the ACP and CSP approaches, as

expounded in [BB89, Re88] respectively, have much in common. They both take time to

be real-valued and, at least semantically, associate time directly with actions, as indeed is

the case with [QAF89]; Thus actions occur at some speci�c point in time. This approach

is very di�erent from ours as can be seen if we try to compare TPL with Real-time ACP

and Timed CSP using the informal terminology of

b c() operator comes. Although they pay much attention to showing that their language

is of use in describing realistic phenomena they also develop an equational theory for

strong bisimulation. Neither of [NRSV92], [MT90] assume maximal progress but in its

place they have insistent actions, i.e. actions which will not delay until the next time

cycle. Needless to say the presence of insistent actions means that in general processes

are not patient, in the informal terminology of the introduction. It seems that in timed

process algebras in general either maximal progress is assumed or insistent actions are

allowed; this is reasonable as both provide a mechanism for forcing actions to happen.

The language presented in [Yi90, Yi91] is the closest in spirit to our language; in fact

it can in some sense be viewed as a real-time version of TPL as it assumes that actions are

instantaneous in addition to time determinism, maximal progress and patience. However

as with [Gr89, MT90a, NRSV92] its semantic theory is based on bisimulation theory.

It is also somewhat more expressive than TPL in that, roughly speaking, it has pre�x

constructs of the form

a

[BW90a] Baeten, J. and Weijland, W., \Process Algebra", Cambridge University Press,

1990.

[BW90b] Baeten, J. and Weijland, W., \Applications of Process Algebra", Cambridge

University Press, 1990.

[BC84] Berry, G. and Cosserat, L., \The ESTEREL Synchronous Programming Lan-

guage and its Mathematical Semantics", Technical Report 842, INRIA, Sophia-

Antipolis, 1988.

[BW89] Burns, A. and Wellings A., \Real-Time Systems and their Programming Lan-

guages", Adison-Wesley, 1989.

[CH88] Cleaveland, R. and Hennessy, M., \Priorities in Process Algebras", Information

and Control, vol 87, nos 1/2, July/August, pp 58{77, 1990.

[CPW86] Cohen, B., Pitt, D.H. and Woodcock, J.C.P., \The Importance of Time in

The Speci�cation of OST Protocols", Technical Report, NPL, London, 1986.

[DS89] Davies, J. and Schneider, S., \An Introduction to Timed CSP", Technical Re-

port, PRG, Oxford, 1989.

[dNH84] De Nicola, R. and Hennessy, M., \Testing Equivalence for Processes" Theoret-

ical Computer Science vol.34, pp 83-133, North-Holland, 1984.

[GB87] Gert, R. and Boucher, A., \A timed failures model for extended communication

processes", Springer-Verlag Lecture Notes in Computer Science vol.267, pp 95-

114, 1986.

[vG88] van Glabbeek, R., \The Linear Time-Branching Time Spectrum", Proc. CON-

CUR90, Lecture Notes in Computer Science, vol 458, pp 278{297, Springer-

Verlag, 1990.

[Gr89] Groote, J.F., \Speci�cation and Veri�cation of Real Time Systems in ACP"

Technical Report CS-R9015, CWI, Amsterdam, 1989. An extended abstract ap-

peared in L. Logrippo, R.L. Probert and H. Ural, editors, Proceedings 10

th

Inter-

national Symposium on Protocol Speci�cation, Testing and Veri�cation, Ottawa,

pages 261{274, 1990.

[He88] Hennessy, M., \Algebraic Theory of Processes", MIT Press, Cambridge, 1988.

[He83] Hennessy, M., \Synchronous and Asynchronous Experiments on Processes", In-

formation and Control, Vol 59, No 1-3, pp 36-83, 1983.

[He81] Hennessy, M., \A Term Model for Synchronous Processes", Information and

Control, Vol 51, No 1, pp 58-75, 1981.

[HR90] Hennessy, M. and Regan, T., \A Temporal Process Algebra" University of Sussex

Computer Science Technical Report 2:90, 1990.

[Hoa85] Hoare, C.A.R., \Communicating Sequential Processes", Prentice-Hall, 1985.

35

[Pn85] Pneuli, A., \Linear and Branching Structures in the Semantics and Logics of

Reactive Systems", Springer-Verlag Lecture Notes in Computer Science vol.194,

pp 15-32, 1985.

[QAF89] Quemada, J., Azcorra, A. and Frutos, D., \TIC: A Timed Calculus for LO-

TOS", Technical Report, Madrid, 1989.

[Re88] Reed, G.M., \A Hierarchy of Domains for Real Time Distributed Computing"

Technical Report, Oxford, 1988.

[Rea91] Regan, T., \Process Algebras for Real-Time Systems", PhD Thesis University

of Sussex, 1991.

[RR86] Reed, G.M. and Roscoe, A., \A Timed model for communicating sequential

processes", Springer-Verlag Lecture Notes in Computer Science, vol.226, pp 314-

323, 1986.

[RS88] Rudkin, S. and Smith, C.R., \A Temporal Enhancement for LOTOS" British

Telecom R and T ,1988.

[Sch86] Schmidt, D.A., \Denotational Semantics", Allyn and Bacon, 1986.

[Sch90] Schneider, S.A., \Correctness and Communication of Real-Time Systems", PhD

Thesis, PRG, University of Oxford, 1990.

[Sch91] Schneider, S.A., \An Operational Semantics for Timed CSP", To appear in

Information and Computation, 1992.

[Ste88] Steggles, P., \A Suggestion for a New Temporal LOTOS Semantics", Technical

Report, GEC, 1988.

[Wi85] Winskel, G., \A Complete Proof System for SCCS With Modal Assertions"

Technical Report, Cambridge, 1985.

[Yi90] Yi, W., \Real-Time Behavior of Asynchronous Agents", Springer-Verlag Lecture

Notes in Computer Science, vol.458, pp 502-520, 1990.

[Yi91] Yi, W., \ A Calculus of Real Time Systems", Ph.D Thesis, Chalmers University,

1991.

[Ze89] Zedan, H. (ed), \Real -Time Systems Theory and Applications", North-Holland,

1989.

[Jo89] Joseph, M., \Time and Real-time in Programs", Springer-Verlag Lecture Notes

in Computer Science vol.405, FST & TCS 9, Bangalore, 1989.

[Ch91] Chen, L., \Decidability and Completeness in Real-Time Processes", Technical

Report, LFCS, Edinburgh, 1991.

[Je91b] Je�rey, A., \A Linear Time Process Algebra", CAV 91, 1991.

37

[MT91] Moller, F. and Tofts, C., \Relating Processes With Respect to Speed", Springer-

Verlag Lecture Notes in Computer Science vol.527, CONCUR 91, pp 424-438,

1991.

[Kl91] Klusener, A.S., \Completeness in Real Time Process Algebra", Springer-Verlag

Lecture Notes in Computer Science vol.527, CONCUR 91, pp 96-110, 1991.

38

