
Contextual equivalence for higher-order π-calculus revisited

Alan Jeffrey

CTI, DePaul University

ajeffrey@cs.depaul.edu

Julian Rathke∗

COGS, University of Sussex

julianr@cogs.susx.ac.uk

October 2002

Abstract

The higher-order π-calculus is an extension of the π-calculus to allow communication of

abstractions of processes rather than names alone. It has been studied intensively by Sangiorgi

in his thesis where a characterisation of a contextual equivalence for higher-order π-calculus is

provided using labelled transition systems and normal bisimulations. Unfortunately the proof

technique used there requires a restriction of the language to only allow finite types.

We revisit this calculus and offer an alternative presentation of the labelled transition system

and a novel proof technique which allows us to provide a fully abstract characterisation of

contextual equivalence using labelled transitions and bisimulations for higher-order π-calculus

with recursive types also.

1 Introduction

It is evident that there is growing interest in the study of mobile code in process languages [2, 1,

7, 12]. It is also clear that there is some relationship between the use of higher-order features and

mobility. Indeed, code mobility can be expressed as communication of process abstractions. For

this reason then it is important for us to develop a clear understanding of the use of higher-order

features in process languages.

Work towards this began several years ago with various proposals for higher-order versions of

known calculi [11, 3], including the higher-order π-calculus or HOπ [8]. This calculus was studied

intensively by Sangiorgi and one of his achievements was to provide a translation of the higher-

order language which supports code mobility, to a first-order π

In this paper we present an alternative description of labelled transition systems and normal

bisimulations for HOπ

T, U ::= Value Types

· Unit type

ch[T] Channel type

T →� Abstraction type

Z Type variable

recZ.T Recursive type

P, Q ::= Terms

v ·w Application

v(x : T)P Input

v〈w〉P Output

if v = w then P else Q Matching

ν(a : T) . (P) Name creation

P ‖ Q Concurrency

∗P Repetition

0 Termination

v, w ::= Values

· Unit value

a Channel name

x Variable

(x : T)P Abstractions

Figure 1: The Syntax

following axioms hold

(comm) a〈v〉P ‖ a(x)Q → P ‖ (x)Q · v

(β− redn) (x)P · v → P[v/x]

(cond—tt) if a = a then P else Q → P

(cond—ff) if a = b then P else Q → Q (a 6= b)

In a standard notation we write ==⇒ to denote the reflexive, transitive closure of → .

We introduce a simple type system for the language which comprises types for channels and

abstractions. We also allow recursive types of the form recZ.T where rec . forms a binder and Z

is drawn from a countably infinite supply of type variables. We must insist that for any recZ.T
that Z does not appear unguarded in T , that is to say that any free occurrence of Z lies within a

subexpression of T of the form ch[U] or U → �. To allow us to infer recursive types for terms we

make use of type isomorphism. We define this by letting ∼iso be the least congruence on types

which includes

recZ.T U

Γ ` · : ·

Γ(v) = T

Γ ` v : T

Γ,x : T ` P

Γ ` (x : T)P : T →�

Γ ` v : T T ∼iso U

Γ ` v : U

Γ ` v : ch[T],w : ch[T]
Γ ` P Γ ` Q

Γ ` if v = w then P else Q

Γ,a : T ` P

Γ ` ν(a : T) . (P)

Γ ` P, Q

Γ ` P ‖ Q, ∗P, 0

Γ ` v : T → � Γ ` w : T

Γ ` v ·w

Γ,x : T ` P Γ ` v : ch[T]

Γ ` v(x : T)P

Γ ` P Γ ` w : T Γ ` v : ch[T]

Γ ` v〈w〉P

Figure 2: The Typing Rules

well-typed process, P, closed if it can be typed as ∆ ` P for some closed ∆. It is easily shown that

subject reduction holds for closed terms for the reduction relation and type inference system given.

2.1 Contextual equivalence

We will now define an appropriate notion of behavioural equivalence based on contexts and barbs.

Contexts are defined by extending the syntax of processes by allowing typed holes [·Γ] in terms.

The type inference system is extended to contexts by using the rule

Γ,Γ′ ` [·Γ]

We write C[] to denote contexts with at most one hole and C[P] for the term which results from

substituting P into the hole.

For any given channel name a such that ∆ ` a : ch[·] we write ∆ |= P ⇓ a if there exists some

P′,P′′ such that P

Reduction closure: A type-indexed relation R is reduction-closed whenever ∆ |= P R Q and

P → P′ implies there exists some Q′ such that Q ==⇒ Q′ and ∆ |= P′ R Q′.

Contextuality: A type-indexed relation R is contextual whenever Γ′ |= P R o Q and Γ ` C[·Γ′]
implies Γ |= C[P] R o C[Q].

Barb preservation: A type-indexed relation R is barb-preserving if ∆ |= P R Q and ∆ |= P ⇓ a

implies ∆ |= Q ⇓ a.

Definition 2.1 (Contextual equivalence) Let ∼= be the open extension of the largest type-indexed

relation which is symmetric, reduction-closed, contextual and barb-preserving. ✷

For technical convenience it will be useful to work with a lighter definition of contextuality. We

say that a relation R is ‖-contextual if it is preserved by all contexts of the form [·Γ] ‖ R and we

let ∼=p denote the open extension of the largest typed relation over processes which is symmetric,

‖-contextual, reduction-closed and barb-preserving. The following lemma demonstrates that this

lighter definition is sufficient.

Lemma 2.2 (Context lemma) Γ |= P ∼= Q if and only if Γ |= P∼=p Q

Proof: The ‘only if’ direction is immediate. For the converse it is sufficient to show that∼=p is pre-

served by each process operator of HOπ. The majority of these are straightforward so we only show

the case for input prefixing. Suppose then (without loss of generality) that ∆,a : ch[T],x : T |= P∼=p Q.

We need to show that∼=a Qk

3 Labelled transitions

We will use a labelled transition system to characterize∼= over higher-order π-calculus terms. The

style of the labelled transition system differs a little from previous transition systems offered for

HOπ. Most notably, the nodes of the transition system are described using an augmented syntax

rather than process terms alone. Specifically, for each k drawn from a countable set of names

disjoint from N and V , we introduce two new operators:

τk and 〈k ⇐ v〉

with the intuitive reading that τk is an indirect reference to an abstraction and 〈k ⇐ v〉 stores the ab-

straction to which k refers so that access to v is provided through interaction with k. The augmented

syntax for nodes is given the grammar of configurations C obtained by extending Figure 1 with:

v ::= . . . (as Figure 1) . . . | τk

C ::= P | 〈k ⇐ v〉 | νa : T . (C) | C ‖C

We impose a syntactic restriction on the augmented syntax so that in any configuration C for any

given k then 〈k ⇐ v〉 appears at most once in C

C

∆ ` v : T a base type

(∆ ; Θ ` a(x : T)P)
a〈v〉?
→ (∆ ; Θ ` (x : T)P · v)

Θ(k) = T ∆ ` w : T a base type

(∆ ; Θ ` 〈k ⇐ v〉)
k〈w〉?
→ (∆ ; Θ ` v ·w ‖ 〈k ⇐ v〉)

∆ ` v : T a base type

(∆ ; Θ ` a〈v〉P)
a〈v〉!
→ (∆ ; Θ ` P)

Θ(k) = T T a base type

(∆ ; Θ ` τk · v)
k〈v〉!
→ (∆ ; Θ ` 0)

Figure 5: Basic first-order labelled transition rules

the reference graph of 〈k ⇐ v〉 ‖C has the node k removed and any edges such that

l′ 7→ k 7→ l

for l′, l 6= k, are replaced with an edge

l′ 7→ l

all other edges involving k are removed. So if node k

So either, k1 = k2 in which case C1 ≡C2 or k1 6= l2 and

C′
1 ≡C′

3 ‖ 〈k2 ⇐ v2〉 and C′
2 ≡C′

3 ‖ 〈k1 ⇐ v1〉

We notice that

C1 ≡ C′
1[v1/τk1

]
≡ (C′

3 ‖ 〈k2 ⇐ v2〉)[v1/τk1
]

≡ C′
3[v1/τk1

] ‖ 〈k2 ⇐ v2[v1/τk1
]〉

(acyclicity implies τk2
6∈ v2[v1/τk1

]) ։ C′
3[v1/τk1

][v2[v1/τk1
]/τk2

]
≡ C′

3[v1[v2[v1/τk1
]/τk2

]/τk1
,v2[v1/τk1

]/τk2
]

(acyclicity) ≡ C′
3[v1[v2/τk2

]/τk1
,v2[v1/τk1

]/τk2
]

(def) ≡ C3

By a symmetric argument we see that C2 ։C′
3[v2[v1/τk1

]/τk2
,v1[v2/τk2

]/τk1
] and, by definition, this

is just C3 so we have C2 ։ C3. Thus ։ is strongly confluent for acyclic terms and hence 〈〈·〉〉 is

well-defined. ✷

Lemma 4.2 (Composition/Decomposition) For ∆ ; Θ `C,D

(i) If 〈〈C ‖ D〉〉 ≡ E and

(∆ ; Θ `C)
α
→ (∆,∆′ ; Θ,Θ′ `C′) and (∆ ; Θ ` D)

ᾱ
→ (∆,∆′ ; Θ,Θ′ ` D′)

then there exists a E′ such that E

It is easy to see that 〈〈C ‖ D〉〉 → 〈〈ν∆′,∆′′ . ((x : T)P ·v ‖C′′ ‖ Q ‖ D′′)〉〉 let us call the target

of this reduction E′. We simply need to check

E ′ ≡ 〈〈ν∆′,∆′′ . ((x : T)P · v ‖C′′ ‖ Q ‖ D′′)〉〉
(τk 6∈ v) ≡ 〈〈ν∆′ . ((x : T)P · τk ‖C′′) ‖ ν∆′′ . (〈k ⇐ v〉 ‖ Q ‖ D′′)〉〉

≡ 〈〈C′ ‖ D′〉〉

Case: ∆ ; Θ `C
νl.k〈τl〉?

→ ∆ ; Θ, l : T `C′ and ∆ ; Θ `D
νl.k〈τl〉!

→ ∆ ; Θ, l : T `D′. Again, by inspection

we see that

– C ≡ ν∆′ . (〈k ⇐ v〉 ‖C′′)

– C′ ≡ ν∆′ . (v · τl ‖ 〈k ⇐ v〉 ‖C′′)

– D ≡ ν∆′′ . (τk ·w ‖ D′′)

– D′ ≡ ν∆′′ . (〈l ⇐ w〉 ‖ D′′)

Note that the previous proposition tells us that rg(C ‖ D) must be acyclic — in particular,

τk 6∈ v. Here we see that

〈〈C ‖ D〉〉 ≡ 〈〈ν∆′,∆′′ . (〈k ⇐ v〉 ‖C′′ ‖ τk ·w ‖ D′′)〉〉
(τk 6∈ v) ≡ 〈〈ν∆′,∆′′ . (〈k ⇐ v〉 ‖C′′ ‖ v ·w ‖ D′′)〉〉
(τl 6∈ v,w,C′′,D′′) ≡ 〈〈ν∆′,∆′′ . (〈k ⇐ v〉 ‖C′′ ‖ v · τl ‖ 〈l ⇐ w〉 ‖ D′′)〉〉

≡ 〈〈C′ ‖ D′〉〉

Case:

Corollary 4.5 (Soundness) For all terms P,Q of HOπ:

Γ |= P ≈o Q implies Γ |= P ∼= Q

Proof: Follows from the previous theorem and Lemma 2.2. ✷

5 Completeness of bisimilarity for contextual equivalence

The interactions described by the labelled transition system are not obviously derived by genuine

contextual observations in HOπ because of the use of the extra syntax for indirect references. In

order to show completeness of our bisimilarity for contextual equivalence we must demonstrate that

the indirect references are in fact definable as terms of the language proper. Following Sangiorgi

[10], we implement the implicit protocol outlined by the indirect references by using the following

translation of the augmented terms into HOπ:

[[k1 : T1, . . . ,kn : Tn]] = k1 : ch[T1], . . . ,kn : ch[Tn]

[[Γ ; Θ `C]] = Γ, [[Θ]] ` [[C]]Θ
[[τk]]Θ = (x : T)k〈x〉0 if Θ(k) = T

[[〈k ⇐ v〉]]Θ = ∗k[[v]]Θ

The translation acts homomorphically on all other terms. We abuse notation here by using identifiers

k as channel names in the translation. It is evident that this translation is well-defined in the sense

that the translation of well-typed augmented terms are indeed well-typed terms of HOπ.

We would now like to prove a correspondence between reductions from the terms of the aug-

mented syntax and reductions between their translations. However, we note that in translating a

term containing both 〈k ⇐ v〉 and τk we provide matching input and output prefixes, which, in

HOπ may create a communication which was not possible in the source term. This turns out not to

be of particular concern to us though as we see that if we starting with terms of HOπ, then terms

reachable by transitions are balanced in the following sense: we call a term C of the augmented

language balanced if for each k then C contains at most one of τk

By inspecting the translation [[·]] and using the fact that C is balanced we see that

[[C]]
h

→ → Q implies [[C]] →
h

→ Q

thus we may assume that the first reduction in (†) above is not of the form
h

→ . This means that

[[C]] → [[C′]] ==⇒ P for some C′ such that C → C′. It is clear that C′ is also balanced so we may

[[C′]] ==⇒ P

to obtain a D such that C′ ==⇒ D′ and [[C′]] ==⇒ [[D]]
h
→∗ P. Putting these together we obtain

C

→ C′ ==⇒ D and [[C]] → [[C′]] ==⇒ [[D]]
h
→∗ P

as required. ✷

Proposition 5.2 For each α,∆ and fresh channels δ,δ′ of appropriate type given by α and ∆, there

exists a process T ∆
α (defined in Figure 6) in HOπ such that if

∆ ; Θ `C
α
→ ∆,∆′ ; Θ,Θ′ `C′

then

∆, [[Θ,Θ′]],δ : ch[T0],δ′ : ch[·] ` T
∆,[[Θ]]

α

and moreover, for balanced D

(∆ ; Θ ` D) ==
α
⇒ (∆,∆′ ; Θ,Θ′ ` D′)

if and only if ∆ ; Θ ` D and

T
∆,[[Θ]]

α ‖ [[D]]Θ ==⇒ ν∆′ . (δ〈∆′〉 ‖ P) with [[D′]]Θ,Θ′
h
→∗ P.

Proof: It is straightforward to check that ∆, [[Θ,Θ′]],δ : ch[T0],δ′ : ch[·] ` T ∆
α whenever

∆ ; Θ `C
α
→ ∆,∆′ ; Θ,Θ′ `C′.

For the remainder, to show the ‘only if’ direction we use Lemma 5.1 Part 1 to reduce our obligation

to the case of a single transition
α
→ , and we must consider each label α. By way of example weα = νl . k〈τl〉! (the other cases can be treated similarly). Suppose:

(∆ ; Θ ` D)
α
→ (∆ ; Θ, l : U ` D′).

then we know that

D ≡ ν∆′′ . (τk · v ‖ D′′)

and

D′ ≡ ν∆′′ . (〈l ⇐ v〉 ‖ D′′).

We see that for T ∼iso U →�

T
∆,[[Θ]]

α ‖ [[D]]Θ ≡ k(x : T)(∗l(y : U)x · y ‖ (δ〈〉⊕δ′〈〉)) ‖ ν∆′′ . (((z : T)k〈z〉0) · [[v]]Θ ‖ [[D′′]]Θ)

==⇒ (δ〈〉⊕δ′〈〉) ‖ ν∆′′ . (∗l(y : U)[[v]]Θ · y ‖ [[D′′]]Θ)

==⇒ δ〈〉 ‖ [[D′]]Θ,l:U

14

as required.

For the converse direction we suppose that

T
∆,[[Θ]]

α ‖ [[D]]Θ ==⇒ ν∆′ . (δ〈∆′〉 ‖ P)

Again, we must perform a case analysis on α. We show the case in which α is νl . k〈τl〉? (the other

cases can be treated similarly). We know ∆′ is empty so T
∆,[[Θ]]

α ‖ [[D]]Θ ==⇒ δ〈〉 ‖ P. Note that

T
∆,[[Θ]]

α has no reductions of its own and can only interact with [[D]]Θ so we can detail the assumed

reductions as

T
∆,[[Θ]]

α ‖ [[D]]Θ ==⇒ T
∆,[[Θ]]

α ‖ P0 → (δ〈〉⊕δ′〈〉) ‖ P1 ==⇒ δ

T ∆
d〈v〉? = d〈v〉(δ〈〉⊕δ′〈〉)

T ∆
d〈v〉! = d(x : T)if x = v then (δ〈〉⊕δ′〈〉) else 0 where ∆(d) = ch[T]

T ∆
νb.d〈b〉? = νb : T . (d〈b〉(δ〈b〉⊕δ′〈〉)) where ∆(d) = ch[T]

T ∆
νb.d〈b〉! = d(x : T)if x 6∈ ∆ then (δ〈x〉⊕δ′〈〉) else 0 where ∆(d) = ch[T]

T ∆
νk.d〈τk〉?

= d〈(x : U)k〈x〉0〉(δ〈〉⊕δ′〈〉) where ∆(d) = ch[T] and T ∼iso U →�

T ∆
νk.d〈τk〉!

= d(x : T)(∗l(y : U)x · y ‖ (δ〈〉⊕δ′〈〉)) where ∆(d) = ch[T] and T ∼iso U →�

(⊕ represents an encoding of internal choice in HOπ)

Figure 6: Testing processes for labelled transitions

Theorem 5.4 (Completeness) For all closed terms P,Q of HOπ:

∆ |= P ∼=p Q implies ∆ |= P ≈ Q

Proof: We define R over terms of the augmented language to be

∆ ; Θ |= C R D iff ∆, [[Θ]] |= [[C]]Θ ∼=p [[D]]Θ

and show that R is a bisimulation. Take ∆ ; Θ |= C R D and suppose that

(∆ ; Θ `C)
α
→ (∆,∆′ ; Θ,Θ′ `C′).

We know from Proposition 5.2 that

∆, [[Θ,Θ′]],δ : ch[T0],δ′ : ch[·] ` T
∆,[[Θ]]

α

and that

T
∆,[[Θ]]

α ‖ [[C]]Θ ==⇒ ν∆′ . (δ〈∆′〉 ‖ P)

with [[C′]]Θ,Θ′
h
→∗ P. We know that

∆, [[Θ]] |= [[C]]Θ ∼=p [[D]]Θ

by the definition of R

and we now must show that ∆,∆′ ; Θ,Θ

[7] J. Riely and M. Hennessy. A typed language for distributed mobile processes. In Proc. POPL.

ACM Press, 1998.

[8] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order

Paradigms. PhD thesis, University of Edinburgh, 1993.

[9] D. Sangiorgi. Bisimulation for higher-order process calculi. Information and Computation,

131(2):141–178, 1996.

[10] Davide Sangiorgi and David Walker. The pi-calculus: A Theory of mobile processes. Cam-

bridge University Press, 2001.

[11] B. Thomsen. Calculi for Higher-Order Communicating Systems. PhD thesis, University of

London, 1990.

[12] Jan Vitek and Giuseppe Castagna. Seal: A framework for secure mobile computations. In

Internet Programming Languages, volume 1686 of LNCS. Springer-Verlag, 1999.

18

