
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

Type­Safe Execution of Mobile Agents

in Anonymous Networks

Matthew Hennessy and James Riely

Report 3/98 May 1998

Computer Science

School of Cognitive and Computing Sciences

University of Sussex

Brighton BN1 9QH

ISSN 1350–3170

Type-Safe Execution of Mobile Agents in

Anonymous Networks

MATTHEW HENNESSY AND JAMES RIELY

ABSTRACT. We present a partially-typed semantics for Dπ, a distributed π-calculus. The semantics

is designed for open distributed systems in which some sites may harbor malicious agents. Nonethe-

less, the semantics guarantee traditional type-safety properties at “good” locations by using a mixture

of static and dynamic type-checking.

The run-time semantics is built on the model of an anonymous network where the source of

incoming agents is unknowable. To counteract possible misuse of resources all sites keep a record of

local resources against which incoming agents are dynamically typechecked.

1 Introduction

In [7] we presented a type system for controlling the use of resources in a dis-

tributed system. The type system guarantees that resource access is always safe,

in the sense that, for example, integer channels are always used with integers and

boolean channels are always used with booleans. The type system of [7], how-

ever, requires that all agents in the system be well-typed. In open systems, such

as the internet, such global properties are impossible to verify. In this paper, we

present a type system for partially typed networks, where only a subset of agents

are assumed to be well typed.

This notion of partial typing is presented using the language Dπ, from [7]. In

Dπ mobile agents are modeled as threads, using a thread language based on the

π-calculus. Threads are located, carrying out computations at

2 Matthew Hennessy and James Riely

to transmit integers. However in an insecure world m may not play according to

the rules; in our example it sends an agent to k which misuses the new resource

by sending the boolean value t along it.

In this paper we formalize one strategy that sites can use to protect them-

selves from such attacks. The strategy makes no assumptions about the security

of the underlying network. For example, it is not assumed that the source of a

message (or agent) can be reliably determined. We refer to such networks as

anonymous networks.

In the presence of anonymous networks a reasonable strategy for sites is

based on paranoia. Since the source of messages cannot be determined it is

impossible to distinguish messages from potentially “trusted” sites; thus no site

can be trusted. To protect itself, a site must bar entry of any mobile agent that

cannot be proven to use local resources as intended.

Type-Safe Execution of Mobile Agents in Anonymous Networks 3

TABLE 1 Syntax

Id: u;v;w ::= e x

Val: U;V ::= i bv u w[u

4 Matthew Hennessy and James Riely

channel a of type A, allocated at ` and unknown to p.

Unlike [4, 6], agents are relatively lightweight in Dπ. They are single-

threaded and can be freely split and merged using structural rules and communi-

cation. As such, they are unnamed.

NOTATION. We adopt several notational conventions, as in [7].

� In the concrete syntax, “move” has greater binding power than composi-

tion. Thus ` :: p j q should be read (` :: p)

Type-Safe Execution of Mobile Agents in Anonymous Networks 5

TABLE 2 Standard Reduction

Structural equivalence:

(s-nil) `.4 Tf
1 0 K24 Tf
64.3Td
(`.4J
/R34 0.24 Tf
5.76016 0 Td
(s)T)Tj
/R29 0724 Tf
14.4 0 Td
())K
/R34 0624 Tf
14.40.5602Td
())�
/R34 0.24 Tf
5.71598 766d
(s)Ts

6 Matthew Hennessy and James Riely

Beside each reduction, we have written the rules used to infer it, omitting (r-str)

and (r-new), which are almost always used. Note that after arriving at `, the

agent sends the value k[a] rather than simply a. In the type system, this identifies

the resource a as non-local at `. If a simple resource value, such as a, had been

communicated to q, it would have had to have been local to `, rather than k. An

example of a process q that uses the received value z[x] is z :: x!h1i, which after

the communication would become k ::a!h1i. This can move to the location k and

send the integer 1 on the newly received channel a.

2.3 Types and Subtyping

The purpose of the type system is to ensure proper use of base types, channels

and locations. In this paper we use the simple type languages from [7, x4],

extended with base types for integers and booleans. We use uppercase Roman

letters to range over types, whose syntax is as follows:

TChan: A;B;C ::= chanhTi

TLoc: K;L;M ::= locfa1:A1; ::; an:Ang; ai distinct

TVal: S;T ::= bool int A K[B1; ::; Bh]; (T1; ::; Tn)

Types are divided into the following syntactic groups:

� TChan of channel types, which specify the type of values communicatedover

a channel, chanhTi.

� TLoc of simple location types, which specify the set of typed channels avail-

able at a location, locfea:eAg.

� TVal of value types, which include types for base values, channels, locations

and tuples.

In value types, location types have the form locfa1:A1; ::; an:Ang[B1; ::; Bh]. The

extended form allows for a certain amount of first-order existential polymor-

phism. Informally, locfea:eAg[eB] may be read “9ex : locfea:eA;ex:eBg”, i.e. the type

of a location which has channels ea of types eA and some (unnamed) channels of

types eB.

Throughout the text, we drop empty braces when clear from context, writing

‘loc’ instead of ‘locfg[]’, ‘K’ instead of ‘K[]’, and ‘u’ instead of ‘u[]’.

Location types are essentially the same as standard record types, and we iden-

tify location types up to reordering of their “fields”. Thus locfa:A; b:Bg[C] =

locfb:B; a:Ag[C]. But reordering is not allowed on “abstract” fields. Thu5.9984(t).2u(3i)-5.R21 14.4 Tf
1 0 0 1 212(98
-32.8801 -17.0398 Td
[(a)-6(nd)-233.C8(ng)-388.667(a)-6(r)-0.332303(e)-239.3286(t)-5.33f8(or)183.15(nf)-0.33295(e)-6(r)-0.33779(e)-6(nt)-2.66695(n)-199.995(t)-5.3338(60179(n)]TJ
/R34 0.24 Tf
1 0 0 2)199/R26 362.38 Tm
[(lo)-1999.31(c)]TJ
/R36 0.24 Tf
17.2797 0 Td
(f)Tj
/R23 14.4 Tf
1 0 Tf
-0.3/R26 362.38 Tm
(a)Tj
/R21 14.4 Tf
7.2 0 Td
[(:)-5.3338(A)5.3338]TJ
/R36 0.24 Tf
1 0 027(e)-3/R26 362.38 Tm
(g)Tj
/R29 0.24 Tf
7.2 0 Td
([)Tj
/R21 14.4 Tf
1 0 .88
17/R26 362.38 Tm
[(B)0.333998]TJ
/R79 0.24 Tf
1 0 0 96Tf
8/R26 362.38 Tm
(;)Tj
/R21 14.4 Tf
1 0 302f
14/R26 362.38 TC
[(B)0.333998]TJ
/R29 0.24 Tf
1 0 0312-438.R26 362.38]m
(.)Tj
/R36 0.24 Tf
6.71992 0 6m
(g)Tj
/R29 0.2401992 0 Tm
(=)Tj
/R34 0.24 4f
26.4 0 Tm
[(lo)-1999.31(c)]TJ
/R36 0.24 Tf
17.2797 0 Td
(f)Tj
/R23 14.4 Tf
1 0 057Tf
9/R26 362.38 Tm
(a)Tj
/R21 14.4 Tf
7.2 0 Td
[(:)-5.3338(A)5.3338]TJ
/R36 0.24 Tf
1 0 06.4 333/R26 362.38 Tm
(g)Tj
/R29 0.24 Tf
7.2 0 Td
([)Tj
/R21 14.4 Tf
1 0 390Tf
6/R26 362.38 TC
[(B)0.333998]TJ
/R79 0.24 Tf
1 0 0 r)-318/R26 362.38 Tm
(;)Tj
/R21 14.4 Tf
1 0 4e.

Type-Safe Execution of Mobile Agents in Anonymous Networks 7

object types:

locfea:eA; b:Bg � locfea:eAg

locfea:eA; b:Bg[eC] � locfea:eAg[eC]

On tuples, the definition is by homomorphic extension: eS �

eT if 8i : Si � Ti

2.4 Type Environments

Location types contain the names of the channels known to be defined at a lo-

cation. To present typing systems for the language in later sections, it is useful

to generalize location types to allow the inclusion of variables as well as names.

Variables are allowed at types int and bool, in addition to channel types A. The

resulting types are called open location types, K :

TSimple: H;G ::= int bool A

TOpen: K ;L;M ::= locfeu:eHg; ui distinct

To be well-formed, we require that every name in an open location type be asso-

ciated with a channel type.

The subtyping relation extends directly to open location types:

locfeu:eH; ev:eGg � locfeu:eHg

A type environment, Γ, maps identifiers to open location types. An example

of a type environment is:

Γ =

8

<

:

k : loc fa :chanhinti;x:intg

z : loc
n

a :chanhloc[chanhinti]i

y :chanhloc[chanhbooli]i

o

9

=

;

Here we have two locations, k and z. The first has an integer channel named a

and an integer variable x. The second has two channels: a, which communicates

(potentially remote) integer channels and y which communicates (potentially re-

mote) boolean channels.

If a type environment contains no variables, we say that it is closed. Closed

type environments map names to (closed) location types K.

In the typing system of the next section we need some notation for extending

Type-Safe Execution of Mobile Agents in Anonymous Networks 9

TABLE 4 Typing for Values and Threads

Values:

(t-sit)
L � locfu:Hg

L ` u:H
(t-base)

L ` n:int; bv:bool

(t-loc)
L ` u[v1; ::; vn]:K[A1; ::; An]

(t-tup)
8i : L ` Ui:Ti

L ` (U1; ::; Un):(T1; ::; Tn)

Threads:

(t-move)

L ` u ::p
(t-newl)

L ` p

L ` (νk:K)p

(t-r)
L ` u:chanhTi L; X:T ` q

L ` u?(X:T)q
(t-newc)

L; a:A ` p

L ` (νa:A)p

(t-w)

L ` u:chanhTi; V :T; p

L ` u!hVip
(t-str)

L ` p; q

L ` nil; �p; p jq

(t-eq)
L ` U:T; V :T; p; q

L ` if U = V then p else q

local communication and matching of values are essentially as before, as ∆ is

not consulted for these reductions. There is a minor change in the rule for the

restriction operator, because ∆ must be augmented to reflect the addition of the

new name.

The only significant change from the standard run-time semantics is in the

rule for code movement:

∆ . `Jk ::pK 7�! kJpK if ∆(k) ` p

This says that the agent p can move from location ` to location k only if p is

guaranteed not to misuse the local resources of k, i.e. ∆(k) ` p. Here p is type-

checked dynamically against ∆(k), which gives the names and types of the re-

sources available at k.

3.1 Runtime Typing

The definition of this runtime local type-checking is given in Table 4. This is a

light weight typing in that the incoming code is only checked to the extent of its

10 Matthew Hennessy and James Riely

references to local resources. Thus judgments are of the form

L ` p

indicating that p can safely run at a location that provides resources as defined in

L.

Perhaps the most surprising rule in this light weight type checking is

(t-move), which involves no type checking whatsoever. However this is rea-

sonable as an agent such as ` :: p running at k uses no local resources; it moves

immediately to the site `. As a result of this rule notice that reductions of the

form

∆ . mJk :: ` ::pK 7�! kJ` ::pK

are always allowed, regardless of the information in ∆.

The only significant local checking is carried out by the two rules (t-r), (t-w)

which we examine in some detail. The subtlety in the read rule (t-r) is to some

extent hidden in the rule for updating location types and this is best explained

by example. The rule dictates, for example, that the agent a?(x:chanhTi)q can

migrate to a location with local resources L provided:

� a is a local channel of the appropriate type, in this case a channel for com-

municating values of type chanhTi

� q is locally well-typed with respect to an augmented set of resources,

L;x:chanhTi.

However suppose the channel a communicates non-local information; e.g. when

is a?(z[x]:K[A])q locally well-typed? The rule (t-r) simply demands that, in ad-

dition to a having the appropriate local type, q is well-typed with respect to the

same set of local resources L. Formally this is because according to the defini-

tions given in Section 2.4 L;z[x]:K[A] is simply L. Intuitively this is reasonable

since any non-local information received on a will not be used locally and thus

it may be ignored.

The rule (t-w) states that agent a!hVip is locally well-typed provided

� the continuation p is locally well-typed

� the channel a has an appropriate local type, say chanhTi

� the value to be transmitted V is locally well-typed to be transmitted on a,

L ` V :T; this means that it must be possible to assign to V the local object

type of the channel a, namely T.

Once more there is a subtlety, this time in the local type checking of values. If

the value V to be transmitted is a local resource, say a channel name b, then

according to the rule (t-sit) b must have the local type T. If, on the other hand,

V is a non-local value, say k[b], then locally this is of no interest; according to

(t-loc) k[b] can be assigned any location type which in effect means that when it

Type-Safe Execution of Mobile Agents in Anonymous Networks 11

is transmitted locally on a its validity is not checked.

This ends our discussion of runtime local type checking, and of the runtime

semantics.

3.2 An Example

As an example consider a system of three locations, k, ` and m, with the follow-

ing distributed type environment, ∆.

∆ =

8

<

:

k : locfa :chanhintig

` : locfb :chanhloc[chanhbooli]ig

m : locfd :chanhloc[chanhbooli]ig

9

=

;

Let P be the following system:

kJm ::d!hk[a]iK

j mJd?(z[x]) ` ::b!hz[x]iK

j `Jb?(z[x]) z :: x!htiK

Here k communicates the name of its integer channel a to m, using the channel

d local to m. Then m misinforms ` about the type of a at k: the communication

along b fools ` into believing that a is a boolean channel. Subsequently ` attempts

to send an agent to k that violates the type of local resource a, by sending a

boolean value where an integer is expected.

The reader can check that according to our runtime semantics the first code

movement between k and m is allowed:

∆ . kJm ::d!hk[a]iK 7�! mJd!hk[a]iK

as local type checking of the migrating agent succeeds, ∆(m) ` d!hk[a]i. The

local channel d is used correctly and since the value transmitted, k[a], is non-

local it is essentially not examined (only the number of names is checked, not

their types).

The local communication at m on channel d now occurs and the second code

movement between m and ` is also allowed,

∆ . mJd!hk[a]iK j mJd?(z[x]) ` ::b!hz[x]iK 7�! � 7�! `Jb!hk[a]iK

because the migrating thread, b!hk[a]i, is also successful in its type check against

local resources, ∆(`). The local communication along b now occurs

∆ . `Jb!hk[a]iK j `Jb?(z[x])z :: x!htiK 7�! `Jk ::a!htiK

12 Matthew Hennessy and James Riely

TABLE 5 Static typing

Values and Threads: As in Table 4

Systems:

(t-rung)
L ` p

Γ; `:L ` `JpK
(t-runb)

` =2 dom(Γ)

Γ `; `

Type-Safe Execution of Mobile Agents in Anonymous Networks 13

of, and interaction with, bad sites. We prove Subject Reduction and Type Safety

theorems for the type system. Intuitively, Subject Reduction can be interpreted

as saying that the integrity of good sites is maintained as computation proceeds,

while Type Safety demonstrates that local resources at good sites cannot be mis-

used.

The static typing relation for anonymous networks is defined in Table 5.

Judgments are of the form

Γ ` P

where Γ is a (open) type environment and P a system. The type environment

only records the types of good locations; thus k 2 dom(Γ) is to be read “k is

good” and m

14 Matthew Hennessy and James Riely

TABLE 6 Runtime Error

(e-comm) `Ja!hVipK j `Ja?(X:T)qK err `
��! if V 6� T

(e-eq) `Jif U = V then p else qK err `
��! if U 6� V

(e-new)

P err k

Type-Safe Execution of Mobile Agents in Anonymous Networks 15

took into account not only to arity mismatches but also access violations.

THEOREM

16

Type-Safe Execution of Mobile Agents in Anonymous Networks 17

extension of partial typing to these richer types.

Our research is related to proposals for proof-carrying code outlined in [10]:

code consumers, which in our case are locations, demand of code producers, in

our case incoming threads, that their code is accompanied by a proof of correct-

ness. This proof is checked by the consumer before the code is allowed to exe-

cute. The correctness is expressed in terms of a public safety policy announced

by the consumer and the producer must provide code along with a proof that it

satisfies this policy. In our case this safety policy is determined by the location

type which records the types of the consumer’s resources, and proof checking

corresponds to type checking the incoming code against this record. Our work is

different in that the correctness proof can be reconstructed efficiently, and there-

fore the producer need not supply an explict proof.

For other examples of related work within this framework see [8, 14]. For

example the former contains a number of schemes for typechecking incoming

code for access violations to local private resources. However the language is

very different from ours, namely a sequential higher-order functional language,

and there is no direct formalization of the fact that distributed systems which

employ these schemes are well-behaved.

A very different approach to system security is based on the use of cryp-

tography and signatures. For example [1] presents a π-calculus based language

which contain cryptographic constructs which ensure the exchange of data be-

tween trusted agents, while [3] contains a description of the application of this

approach in a practical setting.

A Proofs

A.1 Properties of the static type system

First we prove two important properties of type systems with subtyping: Type

Specialization and Weakening.

PROPOSITION A.1 (TYPE SPECIALIZATION).

If L ` V :T and T � S then L ` V :S.

Proof. By induction on the judgementL `V :T. If V :T takes the form V :H then S

must coincide with H, since there is no non-trivial subtyping on channel types or

base types. If V :T has the form w[eu]:L[

eA] then the result is trivial, using (t-loc).

Finally, the case for tuples follows by induction. �

PROPOSITION A.2 (WEAKENING).

� If L ` V :T and K � L then K ` V :T

� If L ` p and K � L then K ` p

� If Γ;w:L ` P and K � L then Γ;w:K ` P

18 Matthew Hennessy and James Riely

Proof. In each case the proof is by induction on the type inference. We examine

two examples of proof on threads:

(t-r). HereL ` u?(X:T)q becauseL ` u:chanhTi andL; X:T ` q. We can apply

the first statement in the proposition to the former, to obtain K ` u:chanhTi,

while induction to the latter gives K ; X:T ` q. An application of (t-r) now

gives the required K ` u?(X:T)q.

(t-newc). Here L ` (νa:A)p because L; a:A ` p. By α-conversion we can

choose a so that it does not appear in K and therefore by induction we have

K ; a:A ` p. Now an application of (t-newc) gives the required K ` (νa:A)p.

We present four cases for the proof on systems.

(t-rung). Here Γ;w:L ` mJpK because M ` p, where M
def
= (Γ;w:L)(m). If m

and w are different then we also have M = (Γ;w:K)(m) and therefore an

application of (t-rung) gives the required Γ;w:K ` mJpK. On the other hand

if m is the same as w then M = L. So we can apply the second part of the

proposition to M , obtaining K ` p. Now (t-rung) also gives the required

Γ;w:K ` mJpK.

(t-runb). This case is trivial.

(t-newlg). Here Γ; w:L ` (ν
`

m:M)P because ` 2 dom(Γ; w:L) and Γ; w:L;

m:M ` P. Applying induction we obtain Γ

Type-Safe Execution of Mobile Agents in Anonymous Networks 21

If ` =2 dom(Γ) then the result is trivial from (t-runb). Otherwise ` 2 dom(Γ).

From Γ ` `Ja!hVipK j `Ja?(X)qK we know Γ ` `Ja!hVipK and therefore

Γ(`) ` p. It follows that Γ ` `JpK.

It remains to show that Γ ` `JqfjV=XjgK, that is Γ(`) ` qfjV=Xjg. Again

from the hypothesis we know Γ ` `Ja?(X:T)qK from which we can conclude

that Γ(`) ` u:chanhTi and L; X:T ` q. From Γ ` `Ja!hVipK we know that

Γ(`) ` V :S for some S for which we also have Γ(`) ` u:chanhSi. In our

typing system this must mean that S and T coincide. We may therefore apply

the Substitution lemma to obtain the required Γ(`) ` qfjV=Xjg.

(r-new). We consider the case:

∆; `:L . (ν
`

a:A)P�! (ν
`

a:A)P0 because ∆; `:(L; a:A) . P �! P0

First suppose ` 2 dom(Γ). Since Γ ` ∆; `:L . (ν
`

a:A)P we know Γ can be

written as Γ0

; `:L0, where L0

� L and therefore Γ0

; `:(L0

; a:A) ` P. We can

now apply induction to obtain Γ0

; `:(L0

; a:A) ` P0, to which (t-newcg) can

be applied to obtain the required Γ ` (ν
`

a:A)P0.

If ` =2 dom(Γ) then by (t-newcb) it is sufficient to prove Γ ` P0. In this

case Γ ` ∆; `:L . (ν
`

a:A)P yields Γ ` ∆; `:(L; a:A) . P to which induction

can be applied to give the required Γ ` P0.

(r-str). This case follows using induction and Proposition A.6. �

A.3 Type Safety

We first show that the typing system is “compatible” with the compatibility rela-

tion�.

LEMMA A.9.
� L ` V :T implies V � T

� L ` V :T and L ` U:T implies V � U

Proof. A straightforward inductive argument, in the first case on the derivation

of L ` V :T and in the second on the structure of the type T. �

THEOREM (4.2, TYPE SAFETY). If Γ ` P and ` 2 dom(Γ) then P err `
7�X�!.

Proof. By induction on the proof that P err `
7��!, we show that if ` 2 dom(Γ) and

P err `
7��! then Γ 0 P, which is sufficient to establish the theorem. Let L denote

Γ(`).

(e-comm). In this case we have `Ja!hVipK j `Ja?(X:T)qK err `
7��!2

22 Matthew Hennessy and James Riely

(e-eq). Here we have `Jif U = V then p else qK err `
7��! because U 6� V . If we

assume Γ ` `Jif U = V then p else qK then we must have Γ ` U:T and Γ `

V :T for some T. Now applying the second part of Lemma A.9 we obtain a

contradiction to U 6� V .

Type-Safe Execution of Mobile Agents in Anonymous Networks 23

[12] James Riely and Matthew Hennessy. A typed language for distributed mobile processes. In

ACM-POPL [2].

[13] Peter Sewell. Global/local subtyping for a distributed π-calculus. Technical Report 435, Com-

puter Laboratory, University of Cambridge, August 1997.

[14] R. Stata and M. Abadi. A type system for java bytecode subroutines. In ACM-POPL [2].

