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Abstract

The paper considers the problem of averaging expert opinion when
opinions are expressed quantitatively by belief functions in the sense
of Glenn Shafer. Practical experience shows that experts usually differ
in their exact quantitative assessments and some method of averaging
is necessary. A natural requirement of consistency demands that the
operations of averaging and combination, in the sense of Dempster’s
rule, should commute. Experience also shows that symmetric belief
functions are difficult to distinguish in practice. By forming a quotient
of the monoid of belief functions modulo the ideal of symmetric be-
lief functions, we are left with an Abelian group with a natural scalar
multiplication making it a real vector space. The elements of this quo-
tient space correspond to what we call “regular” belief functions. This
solves the averaging problem with arbitrary weights. The existence of
additive inverses for regular belief functions means that contrary evi-
dence can be treated without assuming the existence of complements.
Opinions expressed by conditional judgements can be incorporated by
lifting suitable measures from a quotient space to a numerator. The
appendix describes a computer program for implementing these ideas
in practice.

∗Preparation of this paper was supported by SERC grant GR/E 05360. The ADRIAN
project was sponsored by ICI Pharmaceuticals. Thanks are due to both organisations.
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1.3 Contrary Evidence 5

with these symptoms roughly once a day on average, this counts as evidence
against the hypothesis of drug involvement. If patients present with these
symptoms only very infrequently, say once every five years, this would count
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for example, [8, Ch.I].

2.1 Distributive Lattices

A partially ordered set is a set A with a binary relation ≤ satisfying

a ≤ a

a ≤ b and b ≤ a imply a = b

a ≤ b and b ≤ c imply a ≤ c

for all a, b, c in A. A subset S of a partially ordered set A is said to be an
upper set if
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2.2 Probability Measures on Distributive Lattices

A probability measure on a distributive lattice D is any real unit-interval
valued function p:D → [0, 1] satisfying

p(a ∨ b) + p(a ∧ b) = p(a) + p(b)(1)

a ≤ b implies p(a) ≤ p(b)(2)

p(0) = 0 and p(1) = 1.(3)

When D is a Boolean algebra this agrees with the usual definition of a prob-
ability measure on a Boolean algebra. More generally we have the following:

Proposition 1 Every probability measure on a distributive lattice D has a
unique extension to a probability measure on the Boolean algebra freely gen-
erated by D.

The meaning of this is as follows. The Boolean algebra freely generated by
a distributive lattice D is a Boolean algebra BD together with a morphism
η:D → BD of distributive lattices which is universal amongst morphisms
with this property.2 Thus if B is any Boolean algebra and f :D → B is a
morphism of distributive lattices, there exists a unique Boolean homomor-
phism
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leads to

p(a ∨ b ∨ c) =

p(a) + p(b) + p(c) − p(a ∧ b) − p(a ∧ c) − p(b ∧ c) + p(a ∧ b ∧ c).

In general, if S is any finite subset of a distributive lattice D and p is a
probability measure on D, then

p(
∨

S) = 1 −
∑

R⊆S

(−1)|R|p(
∧

R)

where |R| is the number of elements in R and summation over the empty set
is included. This means that the probability of the join of a set of elements
is uniquely determined by the probabilities of the meets of all its subsets.
Distributivity is essential for deriving this result.

2.3 Semilattices

Lattices are required to have both finite meets and finite joins. If we only
require finite limits of one sort, we are dealing with a semilattice. Clearly
there are two sorts of semilattice from the order-theoretic point of view. A
meet semilattice is a partially ordered set in which every finite subset has a
meet. A join semilattice is a partially ordered set in which every finite subset
has a join. A meet semilattice necessarily has a distinguished top element, 1
say, while a join semilattice has a distinguished bottom element 0.

A morphism of meet semilattices is a map which preserves finite meets
while a morphism of join semilattices is a map which preserves finite joins.
Such maps necessarily preserve order. Notice that morphisms of semilattices
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The first three define a commutative monoid—a commutative semigroup (4,
5) with unit (6)—in which every element is idempotent (7). The order rela-
tion can be recovered by the definition

a ≤ b iff a ∨ b = b.

A meet semilattice satisfies the same equations if ∧ replaces ∨ and 1 replaces
0. In that case the order relation must be recovered in the opposite sense:

a ≤ b iff a ∧ b = a.

From the algebraic point of view there is no difference between a meet semi-
lattice and a join semilattice. It is a matter of terminology corresponding to
the distinction between an additive and a multiplicative group. The distinc-
tion only arises when we choose one of the two senses for the ordering.

A meet semilattice is said to be complete if every subset has a meet. Every
finite meet semilattice is complete. Dually a join semilattice is complete if
every subset has a join. The categories of complete join and complete meet
semilattices are particularly rich in structure. Following Joyal and Tierney [9]
we call them the categories of suplattices and inflattices respectively. Their
richness arises principally from the fact that each is isomorphic to its opposite
as follows.

Let A be a suplattice (complete join semilattice). Then A necessarily has
arbitrary meets as well as arbitrary joins. The meet of any subset S is just
the join of its lower bounds:

∧

S =
∨

{a ∈ A|S ⊆ ↑(a)}.

Dually an inflattice has arbitrary joins.3 This means that whenever A is a
suplattice—a partially ordered set with arbitrary joins—the same set with
the opposite partial order, Ao say, is also a suplattice. The joins of Ao are
just the meets of A. Dually the opposite of an inflattice is an inflattice. Now
let A and B be suplattices and let f :A→ B be a morphism of suplattices,
so that f preserves arbitrary joins. Then there is a unique morphism of
partially ordered sets f∗:B → A satisfying the condition

f(a) ≤ b iff a ≤ f∗(b)

for all a ∈ A and b ∈ B. Explicitly f∗ is given by

f∗(b) =
∨

{a ∈ A|f(a) ≤ b}.

f∗ preserves arbitrary meets since A has arbitrary joins and f preserves them.
In general if f :A→ B and g:B → A are order-preserving maps between
partially ordered sets and

f(a) ≤ b iff a ≤ g(b)
3Thus, as an object, a complete semilattice or either sort is in fact a complete lattice.

However, since a morphism of suplattices need not preserve meets, nor a morphism of
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for all a ∈ A and b ∈ B, we refer to f as the left adjoint of g and g as
the right adjoint of f . The left adjoint preserves joins and the right adjoint
preserves meets. Either uniquely determines the other by the condition

f(a) =
∧

{b ∈ B|a ≤ g(b)}

g(b) =
∨

{a ∈ A|f(a) ≤ b}.

Now meets in A are precisely the joins of Ao so that f∗ can equally be consid-
ered as a morphism of suplattices f o:Bo → Ao. This establishes a bijection
between the suplattice morphisms from A to B and the suplattice morphisms
from Bo to Ao. In fact the functor which sends a suplattice to its opposite
and a morphism to its right adjoint establishes an isomorphism between the
category of suplattices and its opposite. Dually the functor which sends an
inflattice to its opposite and a morphism to its left adjoint establishes an
isomorphism between the category of inflattices and its opposite.

From an algebraic point of view our concern in this paper is with proba-
bility measures on complete semilattices in general. Our immediate practical
concern, however, is with probability measures on finite semilattices. To
avoid complications, we shall therefore restrict attention to the full subcate-
gories of finite suplattices and finite inflattices.

2.4 Probability Measures on Inflattices

Definition 1 A probability measure on a finite inflattice A is a real unit-
interval valued function p:A→ [0, 1] satisfying

p(
∨

S) +
∑

R⊆S

(−1)|R|p(
∧

R) ≥ 1

for every (finite) subset S ⊆ A.

Lemma 2 Let f :A→ B be a morphism of finite inflattices and let q be a
probability measure on B. Define p:A→ [0, 1] by

p(a) = q(f(a))

for all a ∈ A. Then p is a probability measure on A, which we denote by the
functional composition q ◦ f .

This follows from the definition and a relatively simple though not trivial
combinatorial argument. Our aim now is to show that the definition of a
probability measure on a meet semilattice is justified by the relation between
probability measures on meet semilattices and probability measures on the
distributive lattices which they freely generate.

The distributive lattice freely generated by a finite inflattice A is the
lattice DA of all lower sets of A ordered by inclusion. The insertion of
generators is the down-segment map ↓:A→ DA which sends an element
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a of A to ↓(a). DA
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for all a ∈ A. Moreover this function, called the density of p, is unique when
it exists.

It is easy to see that a probability measure p and its dual po have the same
density. Thus if m is the density of p then po is given by

po(a) =
∑

{m(b)|a ≤ b}.

Using the representation in terms of densities it is easy in the finite case
to establish an important result concerning measures on direct sums of inf-
lattices. Let A and B be inflattices. Denote by A ⊕ B the set of all pairs
(a, b) with a ∈ A and b ∈ B. Then A ⊕ B is an inflattice under the coordi-
natewise partial order. It is in fact the biproduct of A and B in the category
of inflattices under the obvious injections and projections.

Proposition 6 If p and q are probability measures on the finite inflattices
A and B respectively, then the function p× q defined for all a ∈ A and b ∈ B
by

(p× q)(a, b) = p(a)q(b)

is a probability measure on A⊕B.

Proof The density m of p × q is just the pointwise real product of the
densities of p and q. Thus m(a, b) = mp(a)mq(b) where mp is the density of
p and mq is the density of q. ✷

Corollary 7 If p and q are probability measures on an inflattice A then the
function p · q defined for all a ∈ A by

(p · q)(a) = p(a)q(a)

is also a probability measure on A.

Proof Let ∆:A→ A⊕ A be the diagonal morphism sending a to (a, a).
Then p · q = (p× q) ◦ ∆ which is a probability measure on A by Lemma 2.
✷

Corollary 7 allows us to introduce a binary operation on probability mea-
sures on an inflattice which forms the basis of Dempster’s rule of combination
in the theory of belief functions. Let Pr(A) denote the set of probability mea-
sures on an inflattice A and let the binary operation ⋆ be defined by

p ⋆ q = (po · qo)o

for all p, q ∈ Pr(A).

Proposition 8 Pr(A) is a commutative monoid under ⋆.
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Proof Associativity follows from associativity of real multiplication and the
fact that poo = p and commutativity is obvious. The unit of the monoid is
the measure whose dual has the constant value 1. ✷

The unit v of Pr(A), which we call the vacuous measure on A, is given
explicitly by

v(a) =

{

1 if a = 1
0 otherwise.

It is easy to show that if p has density mp and q has density mq then p ⋆ q
has density5

m(a) =
∑

{mp(b)mq(c)|a = b ∧ c}.

Now let f :A→ B be an inflattice morphism and let f o denote its left
adjoint as a morphism of the opposites Bo and Ao considered as inflattices.
Then we define Pr(f): Pr(A) → Pr(B) by

Pr(f)(p) = (po ◦ f o)o

for all p ∈ Pr(A).

Proposition 9 Pr is a (covariant) functor from the category of finite inf-
lattices to the category of commutative monoids.

Proof If p ∈ Pr(A) and f :A→ B is an inflattice morphism, it follows
that f o:Bo → Ao is also an inflattice morphism and hence by Lemma 2 that
po ◦ f o ∈ Pr(Bo) since po ∈ Pr(Ao). Thus (po ◦ f o)o = Pr(f)(p) ∈ Pr(B).
Now suppose that p, q ∈ Pr(A). Then

Pr(f)(p ⋆ q) = ((p ⋆ q)o ◦ f o)o

= ((po · qo) ◦ f o)o

= ((po ◦ f o) · (qo ◦ f o))o

= (po ◦ f o)o ⋆ (qo ◦ f o)o

= Pr(f)(p) ⋆ Pr(f)(q)

and Pr(f) evidently preserves the unit of Pr(A). Thus Pr(f) is a monoid
homomorphism. To see that Pr(g ◦ f) = Pr(g) ◦ Pr(f) for any inflattice
morphisms f :A→ B and g:B → C we only need observe that (g ◦ f)o =
f o ◦ go and Pr evidently preserves identities. ✷

The probability functor Pr has a simple description in terms of densities.
If p is a probability measure on A with densitym and f :A→ B is a morphism
of inflattices then the density mf of Pr(f)(p) is given for all b ∈ B by

mf (b) =
∑

{m(a)|f(a) = b}.
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contains just the bottom element. Since the exact number of elements in ↑(a)
is not important we shall count the ranks from top to bottom by the integers
0, 1, . . .
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quotient, this means that for each measure p ∈ Pr(A) there is a measure
q ∈ Pr(A) such that [p] + [q] = [0] or in other words such that p ⋆ q is
uniform. Since (p ⋆ q)o = po · qo this means that values of qo across ranks
must be proportional to the reciprocals of the values of po. Thus we need
to be able to construct a probability measure with any preassigned ratios of
po-values across ranks. The following result constitutes the basic lemma of
the present theory.

Lemma 11 Let f be any real-valued function on a finite inflattice A with
n + 1 ranks. Then there exists a proper probability measure p on A and a
sequence of positive real number K0, . . . , Kn such that for each i = 0, . . . , n

po(a) = Ki exp f(a)

whenever rank(a) = i.

Proof Assume first that f(0) = 0. Define a sequence of functions (mi)i≤n

where each function mi is defined on {a ∈ A|rank(a) ≤ i} as follows:

m0(1) = exp f(1)

mi(a) =

{

kimi−1(a) if rank(a) < i
exp f(a) − kigi(a) if rank(a) = i

where

gi(a) =
∑

{mi−1(b)|a < b}

ki = inf
exp f(a)

gi(a)

with the infimum taken over {a ∈ A|rank(a) = i}. It follows by induction
that each constant ki is finite and strictly positive and that each function mi

is non-negative. In particular mn is non-negative. Let m = mn. Then from
the definition we have

∑

{mi(b)|a ≤ b} = exp f(a)(1)

whenever rank(a) = i, since a < b and rank(a) = i imply rank(b) < i. Thus
∑

a∈Am(a) =
∑



3.1 Uniform Measures 19

so that the measure p based on the density m is a proper probability measure.
Moreover it follows from (1) and (2) that whenever rank(a) = i we have

po(a) =
∑

{m(b)|a ≤ b} =
∑

{Kimi(b)|a ≤ b} = Ki exp f(a)

which was the original assertion. If f(0) 6= 0, apply the above construction
to the function f ′(a) = f(a) − f(0) and absorb exp−f(0) into each of the
factors Ki. ✷

Definition 3 If f is any real-valued function on a finite inflattice A we de-
note by reg f the proper probability measure defined by the above construction.

Proposition 12 Pr(A)/Un
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Proof If p ≡ q there are uniform measures u and v such that p ⋆ u = q ⋆ v.
Hence log po−log qo = log vo−log uo, which belongs to N(A), and (1) follows.
The proof of (2) is by induction on rank following the steps of the definition of
the function reg in Lemma 11. We leave the details to the interested reader.
(3) is a restatement of the definition of uniformity and (4) is a restatement
of Lemma 11. ✷

Proposition 14

Pr(A)/Un(A) is isomorphic to the additive group of L(A)/N(A).

Proof Define φ: Pr(A)/Un(A) → L(A)/N(A) by

φ([p]) = [log po]

and ψ:L(A)/N(A) → Pr(A)/Un(A) by

ψ([f ]) = [reg f ].

These are well-defined in view of (1) and (2) above. Now (3) implies that
φ([p]) = [0] iff [p] = [0] and

φ([p] + [q]) = φ([p ⋆ q])

= [log (p ⋆ q)o]

= [log po + log qo]

= [log po] + [log qo]

= φ([p]) + φ([q]).

Thus φ is a group homomorphism and moreover injective as a function. Now
suppose that f belongs to L(A). Then

φ(ψ([f ]) = φ([reg f ]) = [log (reg f)o] = [f ]

by (4). Hence φ ◦ ψ is the identity on L(A)/N(A). Since φ is injective
it follows that ψ ◦ φ is the identity on Pr(A)/Un(A). Since φ is a group
homomorphism it follows that ψ is also a group homomorphism and we are
through. ✷

3.2 Regular Measures

For practical purposes it is inconvenient to deal with equivalence classes of
measures. We show next that each equivalence class contains a distinguished
element which will serve as a canonical representative.

Definition 4 Let ρ: Pr(A) → Pr(A) be defined by

ρ(p) = reg (log po).

We say that a proper measure p is regular if and only if ρ(p) = p and we
denote by Reg(A) the set of regular measures on a finite inflattice A.
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We now show that each element of Pr(A)/Un(A) contains exactly one regular
measure.

Lemma 15 ρ is idempotent: ρ ◦ ρ = ρ. Hence ρ(p) is regular for all p ∈
Pr(A).

Proof Substitute f = log po in (4) above and apply (2). ✷

Proposition 16 Each element of Pr(A)/Un(A) contains one and only one
regular measure.

Proof Suppose [p] belongs to Pr(A)/Un(A). Then φ(ψ([p])) = [p] implies
that [reg (log po)] = [p] or in other words [ρ(p)] = [p]. But ρ(p) is regular
by Lemma 15. Hence every element of Pr(A)/Un(A) contains at least one
regular measure. Now suppose that p ≡ q. Then ρ(p) = ρ(q) by (1) and (2)
of Lemma 13. So if p and q are both regular we have p = ρ(p) = ρ(q) = q.
Thus each equivalence class in Pr(A)/Un(A) contains at most one regular
measure. ✷

This result means that Reg(A
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for all a ∈ A. Then the binary operation on Blf (A), which is called Demp-
ster’s rule of combination, is defined by

p+ q = β(p ⋆ q)

and β: Pr(A) → Blf (A) is a morphism of commutative monoids.
For the theory of regular probability measures on the other hand we have

ρ: Pr(A) → Reg(A) defined by

ρ(p) = reg (log po).

The binary operation on Reg(A) is given by

p+ q = ρ(p ⋆ q)

and ρ: Pr(A) → Reg(A
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subsets and the condition for equality of rank for sets in the quotient B is
evidently (but not trivially) the same as it is for sets in the numerator A,
namely equality of size.

More generally let b be some fixed element of a finite inflattice A and let
B = ↓(b). Then the more general situation corresponding to Example 3 is
that of the quotient map (−) ∧ b:A→ B which sends an element a ∈ A to
a∧ b ∈ B. It must be pointed out, however, that ↓(b) need not in general be
a quotient object of A in the category rILf since the inclusion of ↓(b) in A
need not preserve equality of rank. Besides power sets (or their opposites),
however, there is another significant case where this always occurs, namely
when A is tree-like. We say that a finite inflattice A is tree-like if ↑(b) is
linearly ordered for all b ∈ A except possibly b = 0. Then the inclusion of
↓(b) in A always preserves equality of rank.

Examples 2 and 3 are related to the idea of conditionalisation in Boolean
probability theory. First consider Example 3 in the case where ↓(b) is indeed a
quotient object of A. Applying Reg to the morphism (−) ∧ b:A→ B yields
a linear transformation from Reg(A) to Reg(B) corresponding to positive
conditionalisation for inflattices. It tells us how to modify a regular measure
on A
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Our next task is to show that Reg is functorial. To see this we make
use of the isomorphism between M(A) and Reg(A). Recall that M(A) is
the subspace of L(A) consisting of all real-valued functions on A whose sums
across ranks separately vanish or, more significantly, whose arithmetic means
across each rank separately vanish. Now let f :A→ B be a morphism of
finite inflattices whose left adjoint preserves equality of rank. First define
L(f):L(A) → L(B) by

L(f)(
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commutes. Again this is an exercise we leave to the reader. This fact together
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Pr(f) preserves the monoid operation, because we have taken duals before
and after composing, direct composition with f does not. To see this we
need only consider the quotient map (−) ∧ b when b 6= 1. Composing with
this will lift the unit of Pr(↓(b)) not to the unit of Pr(A) but to a measure
concentrated on b (and therefore in fact an improper one). Clearly this is
unsatisfactory for the purposes mentioned, and nothing can be done to rectify
it. Suppose our expert were to say: “This tells me nothing directly about
whether or not the condition is due to a drug. But it does suggest that if a
drug is involved, it may as well be drug A as drug B.” The only plausible
representation of this judgement is by the vacuous measure, whether on the
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{}

{Juno} {Minerva} {Venus}

{Juno, Minerva} {Juno, Venus} {Minerva, Venus}

{Juno, Minerva, Venus}

Figure 1: The free suplattice generated
by the set {Juno, Minerva, Venus}.

The free inflattice on a finite set X, on the other hand, is again the power
set of X with generators inserted as singletons, but this time the power
set is ordered by opposite inclusion. Since a power set is isomorphic to its
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bottom element ‘fuel and ignition and mechanics’ is unlikely, perhaps, but
not impossible.

We see from this why it is intuitively as well as algebraically natural to
use the ordering by opposite inclusion for the free inflattice. Whereas the free
suplattice is generated as the joins of atoms, the free inflattice is generated
as the meets of co-atoms. The sets involved, in either case, are just the sets
of atoms or co-atoms making up the join or meet. The dual meanings of ‘or’
and ‘and’ provide the appropriate differences in meaning.

Whilst this helps to some extent to understand the differences between
suplattices and inflattices, there are cases that it leaves unresolved. Suppose
we are dealing with the free semilattice generated by just two elements. In
that case the two elements that are neither top nor bottom are simultaneously
atoms and co-atoms. Here is an example. Suppose that a patient is suffering
from an adverse clinical condition and we are concerned whether this was
caused by a specific drug the patient has been taking (the subject drug) or
whether it has some other cause. We can represent the relation of entailment
between these hypotheses by the partially ordered set of Figure 3 where a

❅
❅

❅❅

�
�

��

�
�

��

❅
❅

❅❅

⊥

{subject drug} {something else}

>

Figure 3: A simple alternative.

neutral notation has been used for the top and bottom elements so as not to
prejudge the following question. Should we consider this to be an inflattice or
a suplattice, or even a Boolean algebra? This will determine the appropriate
notion of probability.

Setting aside the Boolean possibility for the moment, assume that this
partially ordered set is to have a semilattice structure. Then the question
hinges on which of two senses of cause we have in mind: whether we mean
by cause a necessary condition or a sufficient condition. Here are two rough
explications of the idea that the drug caused the event:

1. The event would not have occurred if the patient had not taken the
subject drug.

2. The event only occurred because the patient took the subject drug.

In the first case taking the drug is viewed as a necessary condition for the
event. But it is not said to be the only necessary condition. It might equally
be true that the event would not have occurred if the patient’s past medical
history had not predisposed to the event, or if the patient had not been taking
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another drug at the same time (a drug interaction), etc. What we mean by
(1) in simple terms is that “the drug had something to do with it”, or that
the drug was a partial cause. In the second case taking the drug is held to
be a sufficient condition for the event. This would mean, literally, that all
that was needed to cause the event was the taking of the drug. This seems
puzzling unless it means elliptically that no other “abnormal” condition was
necessary. But this unqualified way of speaking is used when we say “the
whole cause of the trouble was the drug.” And most would agree, to take an
extreme example, that cyanide is a cause of death in just this sense.

The same dual interpretations must then be given to the alternative hy-
pothesis that something else caused the event. In the first case it means that
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algebra could yield predictions consistent with experimental findings.10

What has this to do with our problem? It is not being suggested that
the question of adverse drug reactions, for example, should be modeled by
the projection lattice of a Hilbert space. The point is only that the Boolean
model is not a necessity of thought. If we begin with a partial order rep-
resenting an entailment relation between the propositions in some domain,
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Proposition 21 Every probability measure on a finite suplattice A has a
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new operation whose unit is the measure

v(a) =

{

0 if a = 0
1 otherwise.

We can consider this as a default measure corresponding to a state of zero
information or uninformative evidence. Thus contingent propositions in a
suplattice have a default probability value of 1 whereas contingent proposi-
tions in an inflattice have a default probability value of 0. Propositions in a
suplattice are assumed to be innocent, as it were, until proved guilty.

The covariant probability functor Pr is now defined as follows. (We use
the same notation as for inflattices: the context will make it clear which func-
tor is intended.) If A is a finite suplattice, let Pr(A) denote the commutative
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power set suplattice PX, for example, with S a subset of X and |X| = n,
rank(S) is just the cardinality of S with rank(X) = n and rank(∅) = 0. In
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Example 1 Let A be a finite suplattice. Then
∨

:PA→ A, which exhibits
A as a quotient of a free suplattice, is an epimorphism in rSLf. Its right
adjoint is the down-segment mapping.

Example 2 Let S be any lower set of a finite suplattice A and letB = S∪{1}
be the union of S with the top element of A. Then f :A→ B defined by

f(a) =

{

a if a ∈ S
1 otherwise.

is a quotient map in rSLf. Its right adjoint is the inclusion.

Example 3 Suppose that A = PX is a finite power set suplattice, ordered
by inclusion, and that Y is some subset of X. Let B = {S ⊆ X|Y ⊆ S} be
the collection of all supersets of Y . B is closed under intersections, namely
the meets of A, and therefore corresponds to a quotient suplattice. The
quotient map is (−) ∪ Y :A→ B which sends a subset S ⊆ X to its union
with Y . Its right adjoint is again the inclusion of subsets and this preserves
equality of rank since two supersets of S include the same number of sub-
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6.3 Contravariant Transformations

Our discussion here parallels exactly the discussion of contravariant transfor-
mations for probability measures on inflattices. Again we see the immediate
practical use of such transformations in expressing the effect of conditional
opinions. Consider again whether Paris is likely to choose Juno, Minerva
or Venus. We can imagine an acquaintance expressing the following opinion
based on knowledge of a certain trait of Paris’s character. “This tells me
nothing directly about which of the three Paris is likely to choose. But it
does suggest that if he is not going to choose Venus, he is more likely to
choose Minerva11 than Juno.” This is a negative conditional judgement, ex-
pressed conditionally on a certain proposition being false. Given a numerical
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It is common, in the additive theory, to speak as though the independence
of events were a factual question. This is true if the probability measure is
given. But is the question which probability measure is appropriate to a given
situation itself a factual one? Possibly so, if we all agree that probabilities are
to be determined by counting frequencies and if we agree on what the relevant
frequencies are. But we are not always so fortunate. Generally speaking
there is no algorithm for determining the correct probability measure and
there is therefore no algorithm for deciding whether or not two events are
independent. We normally proceed by first making an intuitive judgement
whether certain events are independent and, if so, we use the
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4. Whether the time to onset of the event in the particular patient was
compatible with a drug related effect.

5. Whether any of the diseases which the patient has can in themselves
lead to the event.

6. Whether there is a pharmacological reason why the suspect drug might
cause the particular event.

7. The frequency of occurrence of the event in normal practice indepen-
dent of the particular patient.

8. Whether or not there was a positive dechallenge, i.e. whether the prob-
lem resolved when the drug was stopped.
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Mrs Archer and the passing cyclist, or is it like Mrs Archer and her neighbour
Mrs Baker, or is it somewhere in between?

There is no easy way to settle these questions. The points to make are

• that the intuitive concept of independence of evidence is a primitive
part of our common inductive intuition

• that there is so far no algorithm to substitute for individual judgment
in deciding when two bodies of evidence are independent

• that the present theory is in no worse a position in this respect than
the Bayesian theory.

The reader will find somewhat similar views expressed in [14].

8 Elicitation
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view is based on the idea that two items of evidence, one of which weighs
precisely in favour of a proposition to a given degree and the other of which
weighs precisely against that proposition to the same degree, should cancel
out when combined. This forces us to deal with contrary evidence as follows.
If an item of evidence weighs precisely against an element a to degree s, its
effect is expressed by the additive inverse in the group of regular measures
of the simple measure that would express the opposite situation in which
the evidence weighs precisely in favour of a to the same absolute numerical
degree.
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where again it is assumed that a is neither 0 nor 1.
Now suppose that an item of evidence weighs precisely in favour of an

element a to a given degree s. This will be represented by the additive inverse
in the group of regular (suplattice) measures of the measure corresponding
to evidence against a to the same degree.

Here are some examples. Suppose again we are considering the judgement
of Paris and that there is evidence of strength 0.4 against his choosing Venus.
This leads to Table 5. On the other hand evidence in favour of ‘Venus’ to the

(‘Juno or Minerva or Venus’, 1)
(‘Juno or Minerva’, 1)
(‘Juno or Venus’, 1)
(‘Minerva or Venus’, 1)
(‘Juno’, 1)
(‘Minerva’, 1)
(‘Venus’, 0.6)
(‘’, 0)

Table 5: Evidence against ‘Venus’.

same numerical degree of 0.4 leads to its additive inverse which is given in
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his not choosing Diana. Then according to our proposal this determines in
the first place a measure on the quotient space with bottom element ‘Diana’,
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(‘Diana or Juno or Minerva or Venus’, 1)
(‘Diana or Juno or Minerva’, 1)
(‘Diana or Juno or Venus’, 0.8741)
(‘Diana or Minerva or Venus’, 0.8741)
(‘Juno or Minerva or Venus’, 0.8659)
(‘Diana or Juno’, 0.7796)
(‘Diana or Minerva’, 0.7796)
(‘Diana or Venus’, 0.6537)
(‘Juno or Minerva’, 0.8659)
(‘Juno or Venus’, 0.6455)
(‘Minerva or Venus’, 0.6455)
(‘Diana’, 0.4647)
(‘Juno’, 0.5510)
(‘Minerva’, 0.5510)
(‘Venus’, 0.3306)
(‘’, 0)
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propriate type from A to B. This is essentially the same topic as the previous
one in view of the natural isomorphisms12

Hom(A,
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SML is a strongly typed functional programming language. Each legal
expression has a type which is determined automatically by the compiler.
The basic types employed in the present program are booleans and reals.
More complex types are obtained by forming lists of objects of a given type
(list types), n-tuples of objects of given types (product types) or functions
between objects of given types (function types).

Declarations

A program in SML consists of a sequence of declarations. Value bindings are
introduced by the word val . Thus

val x = 2;

binds the identifier x to an object of type: int . Function declarations
involving variables are introduced by the word fun as in

fun successor x = x + 1;

binding the identifier successor to a function of type: int -> int . Func-
tions may also be defined with pairs or n-tuples as arguments. Thus

fun mult(x,y) = x * y: int;

defines a function of type: (int * int) -> int .14 Functions may also be
defined in “curried” form as in

fun add x y = x + y: int;

which defines a function of type: int -> (int -> int) . When it is given
two integers add returns their sum. When it is given a single integer add

returns a function from integers to integers. Thus the declaration

val successor = add 1;

is an equivalent way of defining the successor function. Functions may also
be defined explicitly in the form

val successor = fn x => x + 1;

In this form the curried version of integer addition can be written

val add = fn x => fn y => x + y: int;
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Lists

A list in SML is an ordered sequence of objects of a given type. Thus [5,4,7]
is an object of type: int list . Lists are constructed from the empty list,
denoted by [] or nil , by inserting a new element at the head. The double
colon :: is used to denote this operation. Thus

[5,4,7] = 5 :: [4,7]

= 5 :: (4 :: [7])

= 5 :: (4 :: (7 :: nil))).

Since every list either matches the pattern nil or the pattern a::l , where
a denotes the first element of the list, functions on lists may be defined by
structural induction. Thus the sum of a list of integers is defined recursively
by

fun sum nil = 0

| sum (a::l) = a + sum l;

giving a function of type: int list -> int . The more general form of this
pattern of declaration is given by the function iter defined by

fun iter f u nil = u

| iter f u (a::l) = f a (iter f u l);

Replacing f by add and u by 0 , the declaration

val sum = iter add 0;

defines the same sum function on integer lists. (The function iter is more
often called foldr or reduce .)

Two general list handling functions definable in this way, namely map

and filter , are worth mentioning. If l denotes a list [a1, . . . , an] of objects
of type: ’a and f is bound to a function f of type: ’a -> ’b , then the
value of map f l is the corresponding list [f(a1), . . . , f(an)] of objects of
type: ’b . (The symbols ’a and ’b are used as type variables.) Thus map

is a function of type: (’a -> ’b) -> (’a list -> ’b list) . Again if p

denotes a property of objects of type: ’a , then filter p l is the sublist of
l of all elements possessing the property in question. Hence filter is a
function of type: (’a -> bool) -> (’a list -> ’a list) .

The composition g o f of two functions has the obvious meaning. The
operator o has type: (’b -> ’c) * (’a -> ’b) -> ’a -> ’c .

We note lastly that a file of SML code could be thought of as written on a
single line. All extra spaces, tabs, newlines and indents are ignored. Layout
is therefore a matter of style or convenience.
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The Code

(***********************************************************

* Title: Moebius *

* LastEdit: 1 June 1987 *

* Author: Peter M Williams *

* University of Sussex *

***********************************************************)

datatype SENSE = Inf | Sup;

type LATTICE = bool list list list;

type DATUM =

(bool list * (bool list list * bool list list)) * real;

exception hd;

fun hd nil = raise hd

| hd (a::l) = a;

fun cons a l = a::l;

fun iter f u nil = u

| iter f u (a::l) = f a (iter f u l);

fun append l m = iter cons m l;

val flat = iter append nil;

fun map f = iter (cons o f) nil;

fun filter p =

iter (fn a => fn l => if p a then a::l else l) nil;

val sum’r = iter (fn x => fn y => x + y) 0.0;

val inf’r =

iter (fn x => fn y => if x < y then x else y) (1.0/0.0);
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infix C;
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| mean l = sum’r l/length’r l;

fun center nil = nil

| center l =

let val m = mean(map (fn(a,x) => x) l)

in map (fn(a,x) => (a,x - m)) l end;

fun lookup (a:bool list) nil = 0.0

| lookup a ((b,x)::l) = if a = b then x else lookup a l;

fun combine f (a::l) (b::m) = f a b :: combine f l m

| combine f _ _ = nil;

val zero = (map o map) (fn a => (a,0.0));

val add =

(combine o combine) (fn(a,x) => fn(_,y) => (a,x+y:real));

fun mult k = (map o map) (fn(a,x) => (a,k*x:real));

fun profile sense lattice =

let fun insert (datum as ((b,(pos,neg)),s)) =

let val x = sgn(s) * ~(ln(1.0 - abs s))

val w = if sense = Sup then ~x else x

val (S,T) =

if sense = Sup then (neg,pos) else (pos,neg)

val unit = (hd o hd o rev) lattice

val c = union unit S

val l = map (filter (fn a => (c C a))) lattice

val m =

iter (fn t => map (filter (fn a => not(t C a)))) l T

val n =

(map o map)(fn a => if b C a then (a,w) else (a,0.0)) m

val q = (flat o map center) n

fun f(a) = let val ac = a U c in (a,lookup ac q) end

in (map o map) f lattice end

in

iter (add o insert) (zero lattice)

end;
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abstype MEASURE = Measure of SENSE *

((bool list * real) list list * (bool list * real) list)

with

local

fun construct sense (lattice: LATTICE) (data: DATUM list) =

let val profile = profile sense lattice data

val measure = regularise sense profile

in Measure(sense,(profile,measure)) end

in

val infcon = construct Inf

val supcon = construct Sup

exception sense

infix ++

fun (Measure(s1,(q1,p1))) ++ (Measure(s2,(q2,p2))) =

if s1 <> s2 then raise sense else

let val s = s1

val q = add q1 q2

in Measure(s,(q, regularise s q)) end

infix **

fun (Measure(s,(q,p))) ** k =

let val kq = mult k q

in Measure(s,(kq, regularise s kq)) end

fun find(Measure(s,(q,p))) = p

end

end;

(***********************************************************

The exported functions have types:
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