
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

Combining the typed λ­calculus with

CCS

W. Ferreira

M. Hennessy

A.S.A. Jeffrey

Report 2/96 May 1996

Computer Science

School of Cognitive and Computing Sciences
University of Sussex

Brighton BN1 9QH

ISSN 1350–3170

Combining the typed λ-calculus with CCS

W. FERREIRA, M. HENNESSY and A.S.A. JEFFREY

ABSTRACT. We investigate a language obtained by extending the typed call-by-value λ calculus

with the communication constructs of CCS. The language contains two interrelated syntactic classes,

processes and expressions. The former are defined using the CCS constructs of choice, parallelism,

and action prefixing of expressions, where these expressions come from a syntactic class which also

includes the standard constructs from the call-by-value λ-calculus.

We define a higher order bisimulation equivalence and prove that it is a congruence for ex-

pressions; when modified in the standard manner to take into account initial τ moves it is also a

congruence for processes. We then show that when applied to expressions this semantic theory is

a generalisation of the theory of equality for the call-by-value λ calculus while when applied to

processes it is an extension of the theory of bisimulation congruence of CCS.

1 Introduction

CCS is an abstract process description language whose study and understanding,

[7], has been of great significance in the development of the theory of concur-

rency. An algebraic view is taken of processes in that their description is in terms

of a small collection of primitive constructors, such as choice +, parallelism k

and action prefixing a?; a!. These action prefixes designate the sending and re-

ceiving of a synchronisation impulse along a virtual channel a. Communication

is deemed to be the simultaneous occurrence of these two events and is denoted

by the special action τ. So CCS expressions describe processes in terms of their

synchronisation or communication potentials and the algebraic theory, expressed

as equations over the constructors, is validated in terms of behavioural equiva-

lences defined using the these potentials.

Much research has been carried out on extending this elegant theory to more

expressive process descriptive languages. Here we are concerned with languages

in which the synchronisation is replaced by the exchange of data, where the ab-

stract actions a? and a! are instantiated to a?x and a!v, the reception and sending

of data. In papers such as [5, 9], and even in [7], such extensions are consid-

ered but the domain of transmittable values is taken to have no computational

significance. All data expressions denote a unique value and the computation

of this value is not of concern. Here we are interested in situation in which the

data space may be computationally complex and their evaluation may effect the

behaviour of processes which use them.

This work was partially supported by the EU EXPRESS Working Group and the Royal Society.

2 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

A typed λ-calculus, based on some primitive set of data types, provides a

non-trivial example of such a data space. It is also a very useful example as

there are various existing programming languages, such as CML [10], Facile

[3], which are based on different methods for combining the communication

primitives of CCS with the typed λ-calculus.

In this paper we try, where possible, to unify CCS directly with the typed

call-by-value λ-calculus, to find a communicate-by-value concurrent language.

However, it is not possible to fully unify the process language with the functional

language, due to the behaviour of CCS summation. The operational semantics

for β-reduction includes:

(λ():e) () τ

�! e

4 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

` true : bool ` false : bool

` () : unit ` n : int
[n 2 f0;1; : : :g]

` e : A ` f : B

` letxA=e in f : B

` e : B

` µxA!B:(λyA:e) : A! B

` e : A

` ce : B

[c : A ! B]

` e : A! B ` f : A

` e f : B

` e : bool ` f : A ` g : A

` if e then f elseg : A ` xA : A

FIGURE 1. Type Rules for λ expressions.

ating expressions to values in a call-by-value manner; of course because of the

presence of recursion this evaluating procedure may never terminate. Formally

6 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

` 0 : π

` v : A; ` p : π

` kA!v: p : π

` p : π

` kB?xB: p : π

` p : π ` q : π

` p+q : π

` p : π ` q : π

` p k!q : π

FIGURE 3. Type Rules for processes.

nicated on channels are values taken from λv. In the next section we will show

how these two languages can be combined to give a concurrent λ-calculus.

The syntax of the process language is given by the following grammar:

p;q : : :2 Proc ::= p k!p j p+ p j 0 j τ:p j kA?xA: p j kA!v: p

The process p k!q represents two computation threads running concurrently—

in this language p and q are treated symmetrically, but in the next section we

introduce the notion of main thread of computation, so we use an asymmetric

notation for parallel composition.

From CCS we adopt process summation +, the deadlocked process, τ prefix,

and two constructs for the transmission and reception of values along channels,

k?x:p and k!v:p; we assume that for each type A, kA ranges over an infinite set

of channels ChanA. The input prefix is a variable binding operator in that in the

expression k?x ` :

8 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

processes, expressions of type process, and the expressions in the underlying λ-

calculus. For example the parallel operator k

10 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

Values:

v

p

v

�! 0

Communication Rules:

k!v:e k!v

�! e k?x:e k?x

�! e

e k!v

�! e0 f k?x

�! f 0

e k! f τ

�! e0 k! f 0[v=x]

e k?x

�! e0 f k!v

�! f 0

e k! f τ

�! e0[v=x] k! f 0

Dynamic rules:

p µ

�! p0

p+q µ

�! p0

q µ

�! q0

p+q µ

�! q0

Reductions:

e

p

µx:(λy:g)

������! e0

e f τ

�! e0 k!lety= f ing[µx:(λy:g)=x]

e

p

v

�! e0

letx=e in f τ

�! e0 k! f [v=x]

e

p

true

���! e0

if e then f elseg τ

�! e0 k! f

e

p

false

���! e0

if e then f elseg τ

�! e0 k!g

e

p

v

�! e0

ce τ

�! e0 k!δ(c;v)

Context Rules:

e µ

�! e0

ce µ

�! ce0

e µ

�! e0

if e then f elseg µ

�! if e0 then f elseg

e µ

�! e0

letx=e in f µ

�! letx=e0 in f

e µ

�! e0

e f µ

�! e0 f

e µ

�! e0

e k! f µ

�! e0 k! f

f µ

�! f 0

e k! f µ

�! e k! f 0

f

p

v

�! f 0

e k! f

p

v

�! e k! f 0

FIGURE 6. Operational Semantics for λcon
v

� backward commutativity:

e

p

v

! e1

e2

#

µ implies

e

p

v

! e1

e3

µ

#

p

v

! e2

#

µ

Combining the typed λ-calculus with CCS 11

Proof Routine induction on the syntax. 2

These special properties of

p

v

�! imply that in som0 53.641(r)2.83 40875 537.423 Tm
[(51.01672(o)4.71457(n)-231.1490)2.83 40875 537.423 Tm
[(51.01672(o)4.71457(n)-231.1490)2.83 408983 284.29 Tm
(0)Tj
/R45 0.2475d
(()Tj
/R13 10.1808 Tf
0 1 -1 0 257.738 187.76 0 10(y)-183.974(t)Tm
8.4793 Tm
(0.8(!)]TJ
/R18 10 0 0 10 0 0 cm BT
/R18 10.1808 T6.479 10m
[(T)-2.20621(h)4.71457(e)-4.11505(s)11.6449(e)-216.386(s)11.6449(p)4.71457(e)-4.11505(c)-4.11505933 Tm
[(µ)4.C(n)-207.551(s)11.64431.72 14.771 215978095 90)2.83.55(e)-4.115054431.720Tj
ET
Q
q 0 4.80226 118 2321 0 180.1a -1 0 257.738 187.7y1808 Tf
0 1 -1 0 257dun sϖ

12 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

we will require that the move e1
l

�! e01 be matched by a weak action e2
l̂

=) e02,

where

�

ε

=) is the reflexive transitive closure of τ

�!

�

l

=) is ε

=)

l

�!

�

l̂

=) is ε

=) if l = τ and l

=) otherwise.

In order to ensure that only closed expressions of the same type are related we

consider typed-indexed relations R , i.e. families of relations RA indexed by types

A.

The requirement that an l-action be matched by one with exactly the same la-

bel is too strong. For example, the expressions kA!(λx:1):0 and kA!(λx: succ0):0

are differentiated although it would be difficult to conceive of a context which

can distinguish them. The appropriate definition of simulation should compare

not only expressions but also labels. To this end, for any type-indexed relation

R , define its extension to labels R l by:

τ R l
A τ

v RA w

p

v R l
A

p

w k?B R l
A k?B

v RB w

k!Bv R l
A k!Bw

We only require labels to be matched up to R l rather than up to syntactic identity.

Unfortunately, the resulting equivalence now identifies all terms in normal

form, since all a normal form can do is tick with its own value. We add the extra

requirement that R be structure preserving, i.e.:

1. if v1 RA!B v2 then for all closed values ` w : A we have v1 w RB v2 w

2. if v1 RA v2 where A is a base type then v1 = v2.

Definition 3.1. (Higher-Order Weak Simulation) A type-indexed relation R

over extended λcon
v is a

14 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

(µx:(λy:e))v �h e[µx:(λy:e)=x][v=y]

letx=v ine �h e[v=x]

lety=(letx=e in f) ing �h

letx=e in(

16 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

an expression of the form

∑
i2I

µi:ei

In λcon
v we can also show that every expression (resp. process) is equivalent, up

to�h (resp. =h), to a such a form. This is the subject of the next subsection.

3.4 A head normal form for closed finite expressions

Here we outline a characterisation of =h in terms of equations and proof rules.

The characterisation is restricted to closed finite expressions from the language

λcon
v , i.e. closed expressions in which for all occurrences of µx:(λy:e) x does

not occur free in e

20 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

A Appendix: Congruence proofs

We prove Theorem 3.3 using a variant of Howe’s [6] technique, and following

Gordon’s [4] presentation. The proof follows closely that in Section 5 of [2] and

here we merely state the required propositions.

One-level deep contexts are defined by:

D ::= x j l j c �1 j if �1 then �2 else �3 j letx=�1 in �2 j �1 �2 j µx:(λy: �1)

kA?x: �1 j kA!�1: �2 j �1 + �2 j �1 k!�2 j τ:�1
Let Dn range over restricted one-level deep contexts: one-level deep contexts

which do not use +.

For any pair of relations R = (R n

;R s

) with R s

�R n, let its compatible

refinement, bR be defined by:

bR
n

= f(Dn[~e];Dn[
~f]) j ei R n fig[bR

s

bR
s

= f(D[~e];D[

~f]) j ei R s fig

[f(µx:(λy:e);µx:(λy: f)) j e R n fg

[f(τ:e;τ: f) j e R n fg

[f(k?x:e;k?x: f) j e R n fg

[f(k!v:e;k!w: f) j e R n f ; v R n wg

The foco

RTj
/R117 11.4432 Tf
0 1 -1 0 231332171(2.42618m
[(R)12.4746]TJ
/R18 0.240113 Tf
0 1 1 0 292332171(2.456951
(�)Tj
/R117 11.4432 Tf
0 1 -1 0 182332171(2.71103m
[(R)12.4746]TJ
/R18 7.51808 Tf
11.6445 0 Td
(�))-9.4.391(t)-5.01912(h)4.71696(a)-4.11505(,)]231936(gs

22 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

[6] D. Howe. Equality in lazy computation systems. In Proceedings of LICS89, pages 198–203,

1989.

[7] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[8] Eugenio Moggi. Notions of computation and monad. Information and Computation, 93:55–92,

1991.

[9] J. Parrow and D. Sangiorgi. Algebraic theories for value-passing calculi. Technical report,

University of Edinburgh, 1993. Also Technical Report from SICS, Sweeden.

[10] J. H. Reppy. A higher-order concurrent language. In Proceedings of the ACM SIGPLAN 91

PLDI, number 26 in SIGPLAN Notices, pages 294–305, 1991.

[11] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order

Paradigms. Phd thesis, Edinburgh University, Scotland, 1992.

[12] B. Thomsen. Higher order communicationg systems theory. Information and Computation,

116:38–57, 1995.

