

Location and Link Failure in a Distributed
π-calculus
A F and M H

A. We develop a behavioural theory of distributed systems in the presence of failures. The
framework we use is that of Dπ, a language in which located processes, or agents, may migrate
between dynamically created locations. These processes run on a distributed network, in which
individual nodes may fail, or the links between them may be broken. The original language, Dπ, is
extended by a new construct for detecting and reacting to these failures together with constructs that
induce failure.

We define a bisimulation equivalence between these systems, based on labelled actions which
record, in addition to the effect actions have on the processes, the actual state of the underlying net-
work and the view of this state known to observers. We prove that the equivalence is fully abstract, in
the sense that two systems will be differentiated if and only if, in some sense, there is a computational
context, consisting of a network and an observer, which can see the difference.

Contents
1 Introduction . 1
2 Dπ with location failure . 4
3 Location and Link Failure . 19
4 Full-Abstraction . 39
5 Conclusions . 60
A Notation . 63
B Auxilliary Proofs . 66

1 Introduction

It is generally accepted that location transparency is not attainable over wide-
area networks, [4], large computational infrastructures which may even span the
globe. Because of this, various location-aware calculi and programming lan-
guages have arisen in the literature; not only do these emphasise the distributed
nature of systems but they also assume that the various system components, pro-
cesses or agents, are aware of their location in the network, and perhaps, also
aware of some aspect of the underlying network topology. In these languages,
computations take place at distinct locations, physical or virtual, and processes
may migrate between the locations of which they are aware, to participate in
such computations.

It is also argued in [4] that failures, and the ability to react to them, are also an
inevitable facet of these infrastructures, which must be taken into account when
designing languages for location-aware computation. The

2 Adrian Francalanza and Matthew Hennessy

• inv

Location and Link Failure in a Distributed π-calculus 3

state of the system, to N′ in the usual manner, but it may also affect the nature
of the underlying network. For example, an observer may extend the network
by creating new locations; we also allow the observer to kill sites, or in the
second framework, break links between sites, thereby capturing changes in the
behaviour of N in response to dynamic failures.

In the framework with link failures, the definition of these actions turns out
to be relatively sophisticated. Intuitively, the action (1) above is meant to simu-
late the interaction between an observer and the system. However, even though
the system and the observer may initially share the same view of the underlying
network, interactions quickly give rise to situations in which these views diverge.
In general, observers may not be aware of the status of all the nodes and links
in a network because they might be unreachable; the system, on the other hand
may reach such nodes through the knowledge of scoped names. So in (1) above,
the network representation Π needs to record the actual state of the underlying
network, together with the observers partial view of it. This in turn will require
developing variations on the actions (1) above, where the actual network repre-
sentations Π, are replaced by more abstract representations.

In Section 2 we treat the case of location failure. We define the language
DπLoc, an extension of Dπ 1 [11], with an additional operator ping l.PdQe, for
checking the accessibility of a location lPe awe accessibthe itd
(D)Tj
/R6j
4u.2024 0 T09(e)Tj
/R2442.0310 Td
(may)Tj
2d418ct.9043 3462 Tf
50.3518 0 Td(by)Tj
1724.8R46 14.3462 Tf
3.9595es Td888theaccessibilj
-418.86854Td
(of)Tj
16.n7099 0 T9
(w)Tj
/R29 14.0 Td
(ork)Tj
23uld415 0 Td21notore alsot ailures, more

viour

the 1accessibisemantic0336 0640212nand e a ar5y�ect ely .rePe e, 1) underlyin
33.14.3462 Tf
29.4895 0 .28 26Tj
/R60 14.3462 Tf
8.63643 0 T399netwainD In v flts7307 0 Td
(a)Tj
/R5742.0310 Td8(abo)Tj
20 14.3462 Tf
10.3149 0 Td
(�)Tj
/R29 14.3462 Tf
7.54612 0 Td
(Loc,)Tj
30.3206 0 Td
(an)Tj
17.38.0048 0 902tthe (d
(the)Tj
21)Tj
58402 0 Td
(ohe)Tj
22.1823 0 Td9(accessib)ons P PHo also PInork it.(1) acc
sit(a)
6.11ali 0 Td
5alsTj
/R244267 14.3462 justifi actions mam

actions t(ore)Tj
3 0 Td
(7ocation)787an (the).63936 0 Td
(ccessib)45h133 0 Td9(a(are)Tj
2x38.3727 0 Td29capturin1987 99 0 T3
(not)vat(ore)Tj
3 0 Td
(7ocation6758459d869)T
Tj
14.
8260 Td
(P)Tcaf)Tj
4.63 0 Td
(P)Tj
/R54j
2374 0 Td
(Tj
13.unn 0 Td
(orkTd(1accessib-409Tj
4149 0 Td
(crearbeme)Tj
33463 0 Td9(a(argru(ore)Tj
3 0 Td
(7ocation6t317.8239 0 Tuiti)T.9024 0 Td
(rin)Tj
14.987 0 Td
(turnTj
14.787 0 Td
(v)Tw)Tj
27.6974 0 Td
(ations)Tj
53.3541 0 Td
(on)Tj
22.1714.3462 Te)Tj
22.n214 0 Td
(other)Tj
33.4415 0 Td
(are)Tj
2x38.3727 0 Td29capturin1j
2099 0 T3
(not)Tj
22747 0 Td
(also)Tj
27s.ce18.86854Td(ore)Tj
4j
42 0 Td
(alsriginshare)Tj-409828)Tj
58402 0 T(the).639374.nn.1 -17.28 Td
(ch1 0 Td
(partial)Tj
903 0 Td
(vCCS.8773 02 Td
7e)Tj
13.
16.74 0 Td
()Tj
21.46 0 Td
(ut)[14)Tj
27582 0 Td
(with)Tj
29.49 14.3462)Tj
24j
52.2839 03
[17)Tj
27582 0 Td
(with)Tj
29.49 14.3462 propos)Tj
17.6584Tj
69.8965 j
24j
52.2839 03
[13]Tj
14.9853759 0 Td
hesad
(o).6393775444 0 Td
(rej
17.354 0 Td
(the0.3149 0 Td
(�)Tj
/R29 14.3462 Tf
7.54612 0 Td
(Loc,)Tj
3
33.614.3462)Tj
24j
52.2839 03
[8].)Tj
9y49 0 Td
(thein)Tj
14Tj
/R014149 0 Td
(cr Tsulj
/R245eman 0 Td
(initially.128 0 Td
(e)Tj
6.1187 06 0 Td(ac0 T0ihrr).63936
16.0 Td
(it)Tj
12pr47.40 Td
(e)Tj
6.1187 06 0 Td(acationtr47.3462 Tf
8Td
(obsis
(on)Tj
28787 90 Td
(scoped)TjTj024 0 Td
(underlyin0533 Td
(of)Tj
15..2465 0 Td
(with)Tj
2j
56 0 Td
((1))Tj
20.40 Td
(e)[16]Tj
17.3866048 0 Td
(these)Tj
32124 0 Td
(lathe)ed
(may).65854Tj
58402 0 Tationtr97446 0 Td
(16 pl3Tj
21..8.8597 0 Td
(uted)Tj
/65843 0 Td9(a
1 0 0 1
34.5252 0 Td
Tj
10.547 0 Td
(,)Tj
s(1))Tj
20517. Td
(scoped)TjTj
/R46 14.34CCS.877Tj
28e18.86854an)Tj
17.86074 0 Td
(fnTj
16.319 0 Td
(locd
(f)Tj
4.6716972i2.2839 9Td
(t)Tj
12p163 0 Td
(ailTd
(neon,)Tj
2752184Td
(it)Tj
12pr47
53.3541 00.3149 0 Td
(�)Tj
/R29 14.3462 Tf
7.54612 0 Td
(Loc,)Tj
30.3208239 0 Tuiti))Tj
121391 0 Td
(Section)Tj
52.2839 0 Td
(2)Tj
11.2.1600-4T48
(dch)Tj
1.34240 Td
(underlying)Tj
66.8709 truare)TjT7.67936 0 Td
nations)Tj34 Td
(ely)Tj
16.5424 0289 Tf
5tions)T8 0 Td
(locd
(vTj
22on80 Td
(ut).)Tj
176e52.2839 0 Tnderlying)Tj
66.8709 papej
/R29 127.6d869)T
Tj
14
43.24 0 Td
(reat)Tj
302605 0 Td
(adj
4.63 0 Td
(P)Tj
/R59y4224 0 Td
(spejmanequire)6Tj
23 0 Td
(r)Tj
4.6716303462 Tf
5
(e)d
(In)Tj.582)Tj
58402 0 Tquire)035445Td

53ocation7 0 Td
(.)Tj
11.0265 0 Td
(W)Tj
12.836 05 Td
(thein1iuire)Tj34.2839 0 Tsulj
29.48954 14. 0 Td
(r)d
(the),)Tj
291334462 Tf
10.3149 0 Td
(�)Tj
/R71 10.0423 Tf
11.9237 0 Td
(Loc,)Tj
30.3206 0 Td
(Fh)Tj
1.3460 Td
(P)TnTj
14.787 0 Td
(v)Tes Td8(share)Tj6
(L94 0 Td
(accessibili0958 0 Td
(vie)Tj
17.1333 0 Td
(lis)Tj
1.37j34.2839 00.3149 0 Td
(�)Tj
/R71 10.523 Tf
11.9237 0 Td
(Loc,)Tj
30.3208239 0 Tan)Tj
17245490Td

53ocation)p1.11 Td
(thexcept)Tj
2 18855 0 T021not)Tj
2

4 Adrian Francalanza and Matthew Hennessy

duction semantics is now given relative to network configuration, ranged over
by ∆, which record both the status of nodes and their connectivity. Interestingly,
ping l.PdQe executed on site k, now checks whether l is accessible from k; it
may not be accessible either because l is dead or because the link between l and
k is broken. Moreover, in DπF, node creation is more complicated, since one
must also specify the connectivity of a new node; in DπF this is achieved using
a simple type system.

In § 3.3 we present a variation of the actions (1) above for DπF. It turns out
that much of the information in the network representations ∆ is irrelevant; for
example if a node

k

Location and Link Failure in a Distributed π-calculus 5

Table 1. Syntax of typed DπLoc

Types
T, U ::= loc[S] | ch S, R ::= a | d

Processes
P,Q ::= u!〈V〉.P | u?(X).P | ∗ u?(X).P | if v=u.PdQe | P|Q

| (ν n :T)P | go u.P | kill | ping u.PdQe | 0

Systems
M,N,O ::= l[[P]] | N|M | (ν n :T)N

but the presence of this construct will facilitate the definition of the reduction
semantics.

There are three syntactic categories in DπLoc. The first, local processes
ranged over by P,Q, includes the standard π-calculus constructs for communica-
tion, a!〈V〉.P and a?(X).P, replicated input, ∗a?(X).P, name restriction (ν n :T)P,
where T types n as a channel or a location name, comparison if v = u.PdQe, in-
action, 0, and parallel composition, P|Q. The values transmitted as part of a
communication, ranged over by V , consist of tuples of identifiers. When input
on a channel, they are deconstructed using patterns, ranged over by X; patterns
are simply tuples of variables, each having a unique occurrence.

The major innovation is a programming construct which allows processes to
react to perceived faults in the underlying communication network. In addition to
the Dπ migration construct go l.P, [11], we add a testing construct, ping l.PdQe,
inspired from [2, 1, 16]. This constructs acts as a conditional, based on the
perceived state of the location l; thus if l is reachable, it launched process P,
otherwise it launches Q

6 Adrian Francalanza and Matthew Hennessy

state of the scoped location (dead or alive).
In contrast to Dπ, DπLoc uses also an additional third level of configurations.

At this level, we have a representation of the network on which the system is
running. A typical configuration takes the form

Π . N

where Π

Location and Link Failure in a Distributed π-calculus 7

Table 2. Local Reduction Rules for DπLoc

Assuming Π ` l :alive

(r-comm)

Π . l[[a!〈V〉.P]] | l[[a?(X)

8 Adrian Francalanza and Matthew Hennessy

Table 3. Network Reduction Rules for DπLoc

Assuming Π ` l : alive

(r-go)

Π . l[[go k.P]] −→ Π . k[[P]]
Π ` k← l

(r-ngo)

Π . l[[go k.P]] −→ Π . k[[0]]
Π 0 k← l

(r-ping)

Π . l[[ping k.PdQe]] −→ Π . l[[P]]
Π ` k← l

(r-nping)

Π . l[[ping k.PdQe]] −→ Π . l[[Q]]
Π 0 k← l

(r-new)

Π . l[[(ν n :T)P]] −→ Π . (ν n :T) l[[P]]

(r-kill)

Π . l[[kill]] −→ (Π − l) . l[[0]]

locations. Dynamic network faults are engendered in the obvious manner by (r-
kill), and finally (r-new), allows us to export locally generated new names to the
system level, as in Dπ.

The rules in Table 4 are adaptations of standard rules for the π-calculus. For
instance, the first rule, (r-str), states that the reduction semantics is defined up to
a structural equivalence, defined in the usual manner, as the least equivalence
relation on systems which satisfies the set of rules and axioms in Table 5. The
remaining reduction rules in Table 4 state that reduction is preserved by parallel
composition and name scoping operations on configurations. But note that the
rule for scoping, (r-ctxt-rest), uses an obvious notation Π + n : T for extending
network representations with new names, which is formally defined in the Ap-
pendix. Note also that this rule needs to allow for the type of the scoped name
to change; this is because types for locations actually carry dynamic state in-
formation, namely whether they are alive or dead, as explained in the following
example.

Example 2.2.2. Consider the following system

Π . k[[go l.a?(x).P]] | l[[(ν k0 :loc[a])(a!〈k0〉.Q | go k0.kill)]] (3)

where Π is the network representation 〈{l, k, a}, ∅〉, consisting of the two live
locations l, k; the addition of the construct go k0. kill indicates that we wish to
consider the newly created location k0, as defective, and thus it may become
faulty some time in the future.

Location and Link Failure in a Distributed π-calculus 9

Table 4. Contextual Reduction Rules for DπLoc

(r-str)
Π . N′ ≡ Π . N Π . N −→ Π′ . M Π′ . M ≡ Π′ . M′

Π . N′ −→ Π′ . M′

(r-ctxt-rest)
Π + n : T . N −→ Π′ + n : U . M
Π . (ν n : T)N −→ Π′ . (ν n : U)M

(r-ctxt-par)
Π . N −→ Π′ . N′

Π . N|M −→ Π′ . N′|M
Π . M|N −→ Π′ . M|N′

Π ` M

Table 5. Structural Rules for DπLoc

(s-comm) N|M ≡ M|N
(s-assoc) (N|M)|M′ ≡ N|(M|M′)
(s-unit) N|l[[0]] ≡ N
(s-extr) (ν n :T)(N|M) ≡ N|(ν n :T)M n < fn(N)
(s-flip) (ν n :T)(νm :U)N ≡ (νm :U)(ν n :T)N
(s-inact) (ν n :T)N ≡ N n < fn(N)

As in Dπ, an application of (r-go), based on the fact that both k and l are alive,
and (r-par-ctxt) on (3), yields

Π . l[[a?(x).P]] | l[[(ν k0 :loc[a])a!〈k0〉.Q | go k0.kill]]

which can be followed by an application of (r-fork), (r-new) (and (r-par-ctxt)) to
launch a new location k0 and get

Π . l[[a?(x).P]] | (ν k0 :loc[a])(l[[a!〈k0〉.Q]] | l[[go k0.kill]])

At this point, we can perform a communication on channel a using (r-par-comm),
thereby andj n (and

10 Adrian Francalanza and Matthew Hennessy

Finally, (r-kill), followed by (r-ctxt-par), can be used to kill k0 and derive

(Π + k0 :loc[a]) . l[[P{k0/x}]] | l[[Q]] | k0[[kill]] −→

(Π + k0 :loc[d]) . l[[P{k0/x}]] | l[[Q]] | k0[[0]]

where the type of k0 changes from loc[a] to loc[d], and thus, an application of
(r-ctxt-rest) reduces (5) to

Π . (ν k0 :loc[d])(l[[P{k0/x}]] | l[[Q]] | k0[[0]]) (6)

�

This example also serves to illustrate another important point that we shall
refer to repeatedly in this report. In general, in a configuration

Π . N

Π denotes the network representation on which the system N is running. But
there may be subsystems of N which are running on extended (internal) net-
works. For example in (3) above, the subsystem l[[a!〈k0〉.Q]] is running with
respect to the network represented by (Π + k0 :loc[a]), while in (6) the subsys-
tem l[[Q]] is running with respect to (Π + k0 :loc[d]).

Reduction barbed congruence

In view of the reduction semantics, we can now adapt the standard approach
[9, 8] to obtain a contextual equivalence for DπLoc; we use the variation first
proposed in [12]. We wish to compare the behaviour of systems running on the
same network; consequently we use the following framework, borrowed from
[8]:

Definition 2.2.3 (Typed Relation). A typed relation over systems is a family of
binary relations between systems, R, indexed by network representations. We
write Π |= M R N to mean that systems M and N are related by R at index Π,
that is M RΠ N, and moreover Π . M and Π . N are valid configurations. �

The definition of our equivalence hinges on what it means for a typed relation
to be contextual, which must of course take into account the presence of the
network. Our definition has two requirements:

v∃〉|
/R∈∃←14.3∈7ersy←Td6∈←T{
50.0∀37←0←Td
⇐runn〉n}⇒T|
4∀.5∈∀5←0←Td
⇐on⇒T|
1∀.334∃←0←TTd
⇐∀e⇒T|
∈1.34∈4←0←Td
⇐netw⇒T|
∈7.6∃74←0←Td
⇐and⇒T|
/R57←14
⇐ork⇒T|
∈3.0∈74←0←Td
⇐�⇒T|
/R∈∃←14d
⇐at⇒T|
14.304∀←0←Td
Td
∃∈1repres6〉t〉oequ〉vo by5vosubs∀mean|
-441.101←-105←0←Td
⇐serv⇒T|
∈3.73r3←0←Td0|
/Rrunn〉n}�v∃〉|
/R∈∃←14.3∈7er

Location and Link Failure in a Distributed π-calculus 11

Definition 2.2.4 (Observers). The intuition of valid observer system O in a dis-
tributed setting Π, denoted as Π `obs O, is that O originates from some live
fresh location k0, migrates to any location in loc(ΠN) to interact with (observe)
processes there and then returns back to the originating fresh location k0 to com-
pare its observations with other observers. For convenience, we often omit the
mentioning of the fresh locations k0 and place observing code immediately at
locations in loc(ΠN). We note that, according to the definition of the reduction
rule (r-ngo), observing code can never reach dead locations and we therefore have
to encode this in our definition of Π `obs O. For convenience, we also disallow
observer to be located at scoped dead loactions, denoted as Π `obs T and defined
in the Appendix. Π `obs O is recursively defined as:-

• Π `obs l[[P]] if fn(P) ⊆ ΠN and Π ` l : alive

• Π `obs (ν n :T)N if Π `obs T and (Π + n :T) `obs N

• Π `obs M | N if Π `obs M and Π `obs N �

Definition 2.2.4, defining allowed observer systems, determines the defini-
tion of contextuality given below.

Definition 2.2.5 (Contextual typed relations). A typed relation R over config-
urations is contextual if:

(Parallel Systems)

•
Π |= M R N

and Π`��Π |= M

|

| N
|= M R N
and Π`obsTF

fresh

⇓ :T = M R N84 Td
(�)Tjition2.2.5(ContRtionlivej
20.750390 Td
(defined)Tj39.456530 Td
(=)TjTj
21.102482 Td
(N)Tjadapta
-418.03597 7.16 Td
(fr)Tof condefinromitstTj
ar
50.822470 Td
(frestion)Tj

53.4741 0 Td
(to)Trequirj
50.8224 Td
(that)
15.347 0 Td
(the)ed= araltionurat, .� Π.N=kat� Td91(dis-e)Tgru
d
(if:)Tj
-73.4389 -2(the
(definingej
/R29 14.3462 Tf
xhibi 14.3462 T46ed)Tj
28.b50.351d
(d4fini-)Tj
-421.26 0 Td
(as:-)Tjratio
/R46 1d
(�)Tj
/R54 14.34627.16247 Td
(R)Td
(.)Tj
9.46 14.3462 Tf
8.9992876 8d
(N)Tj
/R29 14.3462 Tf
17.3576 0 Td
(if)Tj
/R57 14.3462Tf
6.3408 60 ,j/R29 14.572 Tf
62.596.o299 0 Td3
6.752n8Tdchanneld
(N)Tj
/R29 14.34624R33 8)Tj
/R57 d
(if)Tj
/R57 14.3462Tf18n
k [[14.28 ha.Nt〈at
/R46←1∃.04∈3←T{
10.47←03∀0−←0←Td
06∃〉nN

12 Adrian Francalanza and Matthew Hennessy

Then �, called reduction barbed congruence, is the largest symmetric typed
relation over configurations which is:

• barb preserving

• reduction closed

• contextual �

We leave the reader to check that pointwise � is an equivalence relation.

Example 2.2.7. Consider the systems onePkt and twoPkt defined as:

onePkt⇐ l[[go k.(a!〈〉|b!〈〉)]]

twoPkt⇐ l[[go k.a!〈〉]] | l[[go k.b!〈〉]]

They represent two different strategies for sending the messages a!〈〉|b!〈〉 from
l to k. The first system, onePkt, transfers the two messages as one unit (one
packet), whereas the second system, twoPkt, uses a distinct packet for every
message. In a calculus with no network failure, it would be hard to distinguish
between these two systems.

The two configurations are however

Location and Link Failure in a Distributed π-calculus 13

We also note that

Πk . k[[a!〈〉]] ⇓a@k

Πk . k[[a!〈〉]] 6⇓b@k

However the left hand side, Πlk . onePkt | l[[kill]] can never reduce to a configura-
tion with such barbs. Formally, there is no configuration Π . N such that

Πlk . l[[go k.(a!〈〉|b!〈〉)]] | l[[kill]] −→∗ Π . N

where Π . N ⇓a@k and Π . N 6⇓b@k. �

Example 2.2.8. Consider the two systems:

nonDet1⇐ (ν k :loc[a]) k[[kill]] | k[[go l.a!〈〉]]

nonDet2⇐ (ν b :

14 Adrian Francalanza and Matthew Hennessy

By contrast, the next two server implementations introduce a degree of dis-
tribution, by processing the request across a number of locations:

srvDis⇐ (ν data :ch)

l[[req?(x, y).go k1.data!〈x, y〉]]
| k1[[data?(x, y).go l.y!〈 f (x)〉]]

!

srv2Rt⇐ (ν data :ch)

0BBBBBBBBBBBBBBBBBB@

l

2666666664

2666666664req?(x, y).(ν sync :ch)

0BBBBBBBB@
go k1.data!〈x, sync〉
| go k2, k1. data!〈x, sync〉
| synch?(x).y!〈x〉

1CCCCCCCCA

3777777775

3777777775

| k1

""
data?(x, y).

go l. y!〈 f (x)〉
go k2, l. y!〈 f (x)〉

!##

1CCCCCCCCCCCCCCCCCCA

Both servers, srvDis and srv2Rt, distributed the internal database remotely at
location k1. Server srvDis thus receives a client request at l, migrates directly
to k1 and queries the database; the database then returns to l and reports back
the processed value, f (x), on the requested return channel y. The other server,
srv2Rt, accepts a client request at l, but attempts to access the unique remote
database located at k1 through two di�erent routes, one directly from l to k1 and
the other indirectly from l through the intermediate node k2 and then finally to
k1 where the database resides; similarly, the internal database of srv2Rt returns
the answer f (x) on y along these two routes. In a scenario where no fault occurs
to k1 and k2, srv2Rt will receive two answers back at l. To solve this, the orig-
inal requests are sent with a scoped return channel sync; a process waiting for
answers on this channel at location l chooses non-deterministically between any
two answers received and relays the answer on the original channel y.

We leave the reader to check that the local server, server and remote imple-
mentations, srvDis and srv2Rt, are different, that is:

Π |= server 6� srvDis and Π |= server 6� srv2Rt

because of their behaviour in the context

C2[−] = [−] | k1[[kill]]

However, it turns out that the two remote server implementations are reduction
barbed congruent in DπLoc:

Π |= srvDis � srv2Rt

Unfortunately, Definition 2.2.6 makes it hard to prove this statement because it
uses quantification over all possible contexts. �

Due to the problems associated with Definition 2.2.6, we need an inductive
definition of behavioural equivalence that is easier to prove but still consistent
with reduction barbed congruence. In the remainder of this section we define
a bisimulation equivalence which allows us to relate 76 Td
(Due)Tj
28.1778 0 Td
(to)Tj
15.347 0 Td
(the)Tj
21.7024e2a2c5 0 ej
17.8655 0 TTd
(to)Tj
15.348dwi55 3xts.

Location and Link Failure in a Distributed π-calculus 15

Table 6. Operational Rules(1) for DπLoc

Assuming Π ` l :alive

16 Adrian Francalanza and Matthew Hennessy

Table 7. Operational Rules(2) for DπLoc

(l-open)

Π + n :T . N
(ñ:̃T)l:a!〈V〉
−−−−−−−−→ Π′ . N′

Π . (ν n :T)N
(n:T, ñ:̃T)l:a!〈V〉
−−−−−−−−−−−→ Π′ . N′

l, a , n ∈ V

(l-weak)

Π + n :T . N
(ñ:̃T)l:a?(V)
−−−−−−−−→ Π′ . N′

Π . N
(n:T, ñ:̃T)l:a?(V)
−−−−−−−−−−−→ Π′ . N′

l, a , n ∈ V

(l-rest)

Π + n :T . N
µ
−→ Π′ + n :U . N′

Π . (ν n :T)N
µ
−→ Π′ . (ν n :U)N′

n < fn(µ)

(l-par-ctxt)

Π . N
µ
−→ Π′ . N′

Π . N|M
µ
−→ Π′ . N′|M

Π . M|N
µ
−→ Π′ . M|N′

Π ` M

(l-par-comm)

Π . N
(ñ:̃T)l:a!〈V〉
−−−−−−−−→ Π′ . N′ Π . M

(ñ:̃T)l:a?(V)
−−−−−−−−→ Π′′ . M′

Π . N|M
τ
−→ Π . (ν ñ : T̃)(N′|M′)

Π . M|N
τ
−→ Π . (ν ñ : T̃)(M′|N′)

rules inherited from distributed π-calculi such as Dπ; note, however, that actions
can only occur at live locations. The rules in Table 7 are also adaptations of the
standard rules for actions-in-context from [9] together with the rule (l-par-comm),
for local communication. Here, we highlight the rule (r-weak), dealing with the
learning of the existence of new location names and their state as a result of
an input from the context; this rule was adopted from a variant used already in
[9, 8]. Note also the general form of (l-rest), where the type of n may change
from T to U; this phenomena is inherited directly from (r-ctxt-rest) of Table 4 in
the reduction semantics and explained in Example 2.2.9.

The rules dealing with the new constructs of DπLoc, are contained in Table 8,
most of which are inherited from the reduction semantics. The only new one is
(l-halt), where the action kill : l represents a failure induced by an observer. This
is in contrast with the rule (l-kill), where l is killed by the system itself and the
associated action is τ.

Location and Link Failure in a Distributed π-calculus 17

Table 8. Operational Rules(3) for DπLoc

Assuming Π ` l : alive

(l-kill)

Π . l[[kill]]
τ
−→ (Π − l) . l[[0]]

(l-halt)

Π . N
kill:l
−−−→ (Π − l) . N

(l-new)

Π . l[[(ν n :T)P]]
τ
−→ Π . (ν n :T)l[[P]]

(r-go)

Π . l[[go k.P]]
τ
−→ Π . k[[P]]

Π ` k← l

(r-ngo)

Π . l[[go k.P]]
τ
−→ Π . k[[0]]

Π 0 k← l

(r-ping)

Π . l[[ping k.PdQe]]
τ
−→ Π . l[[P]]

Π ` k← l

(r-nping)

Π . l[[ping k.PdQe]]
τ
−→ Π . l[[Q]]

Π 0 k← l

The first sanity check we prove about our lts is the property that in an action

Π . N
µ
−→ Π′ . N′

were µ is an external action, the residual network Π′ is completely determined
by the network Π and the external action µ.

Definition 2.3.2 (Action residuals). The partial function after from tuples of
network representations Π and external actions µ to network representation is
defined as:

• Π after (ñ : T̃)l : a!〈V〉 is defined as Π + ñ : T̃

• Π after (ñ : T̃)l : a?(V) is defined as Π + ñ : T̃

• Π after kill : l is defined as Π − l

18 Adrian Francalanza and Matthew Hennessy

The second sanity check is that the actions are indeed well-defined relations
over configurations.

Proposition 2.3.4. The lts defined in Definition 2.3.1 forms a binary relation

between well-defined configurations. That is, if Π . N
µ
−→ Π′ . N′ and Π ` N

then Π′ ` N′.

Proof. By induction on the derivation of the action Π . N
µ
−→ Π′ . N′. Note

that if µ is an external action then Proposition 2.3.3 gives the precise form of Π′.
Moreover if it is the internal action τ then it is possible to prove that Π′ either
coincides with Π or takes the form Π − l for some l live in Π. �

Using the lts of actions we can now define, in the standard manner, weak
bisimulation equivalence over configurations. Our definition uses the standard

notation for weak actions, namely
µ
=⇒ denotes =⇒

µ
−→=⇒, and

µ̂
=⇒ denotes

•
τ

−→∗ if µ = τ

•
µ
=⇒ otherwise.

Definition 2.3.5 (Weak bisimulation equivalence). This is denoted as ≈, and is
defined to be the largest typed relation over configurations such that if Π |.�Π

Location and Link Failure in a Distributed π-calculus 19

It is clear that R is a typed relation; we only have to show that R it is a bisimula-
tion. The proof proceeds by induction on the structure of Π . M and Π . N. �

Example 2.3.7. We recall that in Example 2.2.8, we claimed that Πl . nonDet1
was equivalent to Πl . nonDet2. We here show that they are bisimilar, by giving

20 Adrian Francalanza and Matthew Hennessy

Table 9. Syntax of DπF

Types

T, U, W ::= ch | loc[S, C]
S, R ::= a | d
C, D ::= {u1, . . . , un}

Processes
P,Q ::= . . . | break l

Systems
N,M ::= . . .

describe the live connections to other locations. Thus, in DπF, a location type is
denoted as loc[S, C], where the first element S is inherited from Section 2, and
the second element C is a set of locations {l1, . . . , ln}. If a new k location is de-
clared at this type, then it is intended to be linked in the underlying network with
each of the locations li, although there will be complications; see Example 3.2.1.
The only other modificiation to the syntax is the addition of the process construct
break l, which breaks a live connection between the location hosting the process
and location l. Contextual equivalences then take into account the effect of link
faults on system behaviour, in the same manner as the presence of kill takes node
faults into account.

The final major extension in the DπF syntax is in the network representa-
tion; in a setting where not every node is

Location and Link Failure in a Distributed π-calculus 21

• D ⊆ loc(N) represents the set of dead locations, as before.

• L ⊆ loc(N) × loc(N) represents the set of connections between locations �

As with DπLoc network representations, we use the notation ∆N , ∆D and
∆L to refer to the individual components of ∆. We will also have various nota-
tion for checking properties of DπF network representations, and updating them;
these will be explained informally, with the formal definitions relegated to the
Appendix.

3.2 Reduction Semantics of DπF

The definition of well-formed configurations, Definition 2.2.1 generalises in a
straightforward manner: we say ∆ . M is a well-formed configuration if every
free name occuring in M is also in ∆N . Then the judgements of the reduction
semantics take the form

∆ . M −→ ∆′ . M′

where ∆ . M and ∆′ . M′ are well-formed configurations. This is defined as
the least relation which satisfies the rules in Table 2 and Table 4 (substituting
∆ for Π) , all inherited from the reduction rules for DπLoc, together with the
new reduction rules of Table 10, which we now explain. We note that, as usual,
all of these rules require that the location where the activity is to occur is alive,
∆ ` l : alive.

The most subtle but important changes to the network reductions rules are
those concerning the constructs go and ping. Even though the general intuition
remains the same to that of § 2.2, the former notion of k being accessible from l,
used by rules such as (r-go) and (r-nping), and still denoted as ∆ ` k← l, changes;
for k to be accessible from l, two conditions must hold, namely that k is alive
and that the link between l and k is alive as well. If any of these two conditions
do not hold, then k is deemed to be inaccessible from the point of view theasis(still)Tj
2596 13.0778 0 Td
(914.3462 Tf
(as)Tj
-ible)Tj
/R29 14.3462 Tf
75.1787 0 Td
(from)Tj
33.5 0 Td
(is)Tj
13s.3462 Tf
15.4591between3..n Tfj
4-.16 Td
(a 0 Td
(linkTE1TTd
tw)Tj
14.1545 0 T)Tj
7.22Tj
4Td
(w)Tj
f6991 0 T6d
(with)Tj
39. Td
(i0 T14..3462 Tfx14.154538Td
(Loc)Tj
26.974 0 Td
(netw)Tj
27.6974 048d
(ork)Tj
22.4065 0 Td
3.959 Td
uction)Tjh
47.4723390488al,thetois theandping,

Dπandping and(r-nping) thewasnameDπ. such

is
Fv

3 05
(such)Tj
d
tw

v10,weforDπ be pinghav is thatoccurr-nping)thatr-nping) fromkisinaccessiblefrom l infor�. as � ‘ :e asa0 T(name)Tj
t14.154570 Td
(F)Tj
10.4354 1Td
(is)Tj
35.3573 0 Td
(
(that)Tus24.8103R29 1diti62 Tf
-448.o162 -1104 12.2659 Tf
25.5343 14.3462 Tfj
f6991 0 T0d
(with)Tjmigr7 0 Td;754 684612rning)Tj
67.7147 0 Td
(the)Tj
22.1824 0 083formal and

is releissame the k dead the netwand

�.3462 Tf
11.7553 39Td
(is)Tj
3hi823 0 Td814.3462 Tf
13.3029 0 Td
(v)Tj
d9.84846(�)ation andis pingork(D

D

;, �49 144.3462 TfT2.43958 0 Td
(,)Tjj
25.302 0 Td
(the)Tjf22.1824 0 3.03.ormal

22 Adrian Francalanza and Matthew Hennessy

Table 10. New Network Reduction Rules for DπF

Assuming ∆ ` l : alive

(r-go)

∆ . l[[go k.P]] −→ ∆ . k[[P]]
∆ ` k← l

(r-ngo)

∆ . l[[go k.P]] −→ ∆ . k[[0]]
∆ 0 k← l

(r-ping)

∆ . l[[ping k.PdQe]] −→ ∆ . l[[P]]
∆ ` k← l

(r-nping)

∆ . l[[ping k.PdQe]] −→ ∆ . l[[Q]]
∆ 0 k← l

(r-newc)

∆ . l[[(ν c :ch) P]] −→ ∆ . (ν c :ch) l[[P]]

(r-newl)

∆ . l[[(ν k :loc[S, C]) P]] −→ ∆ . (ν k :loc[S, D]) l[[P]]
loc[S, D] = inst(loc[S,C], l,∆)

(r-kill)

∆ . l[[kill]] −→ (∆ − l) . l[[0]]

(r-brk)

∆ . l[[break k]] −→ (∆ − l↔k) . l[[0]]
∆ ` l↔k

Table 11. New Structural Rules for DπF

. . .

(s-flip-1) (ν n :T)(νm :U)N ≡ (νm :U)(ν n :T)N n < fn(U)
(s-flip-2) (ν n :T)(νm :U)N ≡ (νm : U−n)(ν n : T+m)N n ∈ fn(U)
. . .

of which is relegated to the Appendix; intuitivel.3462 Tf
7.54612 0 Td
()()Tj
/R60 14.3462 Tf
9.58328 0 Td
(�)Tj
/R46 14.3462 Tf
8.99924 0 Td
(m)Tj
/R29 14.3462 Tf
11.8749 0 Td
)()(

)(the
(:)Tj
5.98652 0 Td
(:)TSnthein-44uit 0 Td
(:)Tj

/Ra
(for)Tj50 Td
 Td
(Appeypetrue
/W�)T.08 2510.329.3d
(�)Tj
/R
/R6l530.
q 10 0 0 10 0 0 cm14.3462 TfTd
()()Tj
/R6iti()Tj
/R6;D]) l

int28 06 14.3462set149 0 T6([)Tj
1.9islate Td
(int28 06[)Tj
1.9subset149 40.4062 Tf
11.is n

Location and Link Failure in a Distributed π-calculus 23

rules in Table 5, defining the structural equivalence. The revision is detailed in
Table 11; the rule (s-flip) is replaced by the two rules (s-flip-1) and (s-flip-2). This
enables us to flip two successively scoped locations even if the first is used in the
type of the second, that is there is a link between the two scoped locations.

Example 3.2.1. Consider the system:

launchNewLoc⇐ l3[[a!〈l1〉]] | l3[[a?(x).(νk : loc[a, {x, l2, l4, l5}])P]]

running on a network ∆ consisting of four locations l1..l5, all of which are alive
except l4, with l2 connected to l1 and l3, and l3 connected to l4. Diagrammatically
this is easily represented as:

d d t

d d

- -� �

A
AAU

A
AAK

l1

l2 l3 l4

l5

where, open nodes (◦) represent live locations and closed ones (•) dead locations;
we systematically omit reflexive links in these network diagrams. Formally de-
scribing ∆ is more tedious:

• ∆N is {a, l1, l2, l3, l4, l5}

• ∆D is {l4}

• the link set ∆L is given by
(
〈l1, l1〉, 〈l2, l2〉, 〈l3, l3〉, 〈l4, l4〉, 〈l5, l5〉,
〈l1, l2〉, 〈l2, l3〉, 〈l3, l4〉, 〈l2, l1〉, 〈l3, l2〉, 〈l4, l3〉

)

Clearly there is considerable redundancy in this representation of link sets; ∆L
can be more reasonably represented as:

∆L = {l1↔ l2, l2↔ l3, l3↔ l4, l5↔ l5}

where l↔k denotes the pair of pairs 〈l, k〉, 〈k, l〉 together with the reflexive pairs
〈l, l〉, 〈k, k〉; in such cases, a reflexive bi-direcitional link l ↔ l would be used
for completely disconnected nodes such as l5. When we apply the reduction
semantics to the configuration ∆ . launchNewLoc, the rule (r-comm) is used first
to allow the communication of the value l1 along a, and then (r-newl) can be
used to launch the declaration of k to the system level. However, the evaluation
of inst(l2, loc[a, {l1, l2, l4, l5}],∆) at launching turns out to be loc[a, {l1, l2, l3}]
because:

24 Adrian Francalanza and Matthew Hennessy

• the location from where the k is launched, that is l3, is automatically con-
nected to k.

• l1 and l2 are reachable from the location where the new location k is launched,
that is ∆ ` l1, l2f l3; l2 is directly accessible from l3 while l1 is reachable
indirectly through l2

• l4 and l5 are not reachable from l2; l4 is dead and thus it is not accessible from
any other node; l5 on the other hand, is completely disconnected.

So the resulting configuration is:

∆ . (ν k : loc[a, {l1, l2,3 }]) l3[[P{l1/x}]]

The network∆ of course does not change, but if we focus on the system l2[[P{l1/x}]],
we see that it is running on the internal network represented by:

d d t

d dd

- -� �

A
AAU

A
AAK

�
���

�
���

-�

Q
Q

Q
Qs

Q
Q

Q
Qk

l1

l2 l3 l4

l5k

�

This distinction between the internal networks used by different subsystems
has already occurred in the semantics of DπLoc; see the discussion of Exam-
ple 2.2.2. Nevertheless, we warn to the reader that there will be more serious
consequences for DπF, due to the complex nature of reachability that comes into
play.

Reduction barbed congruence

The definition of Reduction barbed congruence, Definition 2.2.6, originally de-
veloped for DπLoc configurations, can be adapted to apply also to DπF. The
formal definition is delayed to Section 4, but let us use the the same notation,

∆ |= M � N (7)

to indicate that the systems M and N are equivalent relative to the network ∆; the
discussion in the section only relies on an intuitive understanding of this concept.

Let us now reconsider the three implementations of a client server discussed
in Example 2.2.9, but this time running on a network with explicit links. For con-

Location and Link Failure in a Distributed π-calculus 25

venience, in this and later examples, we systematically omit channel names from
network representations. Moreover, we abbreviate the location type loc[a, C] to
loc[C] when the status of location is understood to be alive.

Example 3.2.2. Let ∆ represent the following network:

d

d

d-�

�����1

�����)

PPPPPi

PPPPPq

l

k2

k1

Formally ∆ is determined by letting ∆N be {l, k1, k2}, ∆D be ∅ and ∆L be {l↔
k1, l↔k2, k1↔k2}.

The distributed server implementations, srvDis and srv2Rt, presented earlier
in Example 2.2.9, are no longer reduction barbed congruent relative to ∆, as in
this extended setting, the behaviour of systems is also examined in the context
of faulty links. It is sufficient to consider the possible barbs in the context of a
client such as l[[req!〈l, ret〉]] and a fault inducing context:

C3 = [−] | l[[break k1]]

which breaks the link l↔ k1. Stated otherwise, if the link l↔ k1 breaks, srv2Rt
will still be able to operate normally and barb on ret@l; srvDis, on the other
hand, may reach a state where it blocks since migrating back and forth from l
to k1 becomes prohibited and as a result, it would not be able to barb ret@l.
However consider the alternative remote client srvMtr, defined as:

srvMtr ⇐ (ν data)

0BBBBBBBBBBBBBBBBBBBBBBB@

l

2666666664

2666666664req?(x, y).(νsync)

0BBBBBBBB@
go k1. data!〈x, sync〉
|monitor k1dgo k2, k1.data!〈x, sync〉e
| sync?(x).y!〈x〉

1CCCCCCCCA

3777777775

3777777775

| k1

""
data?(x, y).

go l. y!〈 f (x)〉
|monitor ldgo k2, l.y!〈 f (x)〉e

!##d919 28pP9 TL
(C)’
3.36001 TL
(C)’
3.23001 TL
(C)’
(C)’
3.36001 TL
(C)’
3.23999 TL
(C)’
3.36001 TL
(C)’
3.23
9.96001 TL
(C)’
3.35999 TL
(C)’
3.26001 TL
(C)’
3.35999 TL
(C)’
3.24001 TL
(C)’
(C)’
3.36001 TL
(C)’
3.23001 TL
(C)’
(C)’
3.36001 TL
(C)’
3.23999 TL
(C)’
3.36001 TL
(C)’
3.23
9.96001 TL
(C)’
3.35999 TL
(C)’A99 TL0 Td
(l)Tj
/R29 10 14 4 1pa Tf1.0679 0 Td
32here dmonitorx⇐ er t〈ea ⇐1eforth46 147(a)Tj
15.4591 00 Td
(xa8.3462 Tf
91.7656 0 T41(and)Tj
23.unche.8484 0 Td
(as)Tj
/R42 Tf63462 Tf
5P.3408 1 Td
(1)Tj
/R296 1at
(!)Tj
58.3916 05 0 Td
(:)Tj
/R4614.33462 Tf
5.98652 1 Td
(1)Tj
/R29 13Td
(e)Tj
1 2.16001 Td-.34 102er)Tj
-421.93 acces1ibl.9474674.343462 Tf
5I.6848 0 35
(It)Tj
13.0712 0 0d
(is)Tj
1f.2323 0 Td
(2.97ined)Tj
5.18652 0 Td
(de�and)Tj
26.7922 0 Td
(as:)Tj
/R721(xa0142 Tf
-147.39.26921 0 Td
(monitor)Tj
/R46 14.3462 Tf
48.905 0 Td
(x)Tj
/R54 4.33462 Tf
3dTf
6 0 Td
(()Tj
/R46
(Cd
(e)Tj
6P8.905 0 Td
(x)Tj
/R58ocat
(!)Tj
5e51169001 d
(e)Tj
62.8436 0 Td
(()Tj
/R2)Tj7.3462 Tf
20.1467 0 Td
(()Tj
/R60 14.3462 Tf
4.79163 0 Td
(�)Tj
/R46 14.3462 Tf
8test0.16 Td
(data)Tj
/R29ongr3462 Tf
57922 0 0 Td
(;)Tj
/R84 14.3462 Tf
5ch8436 0 Td
(()Tj
/R2)2 1e�ned?(data!

26 Adrian Francalanza and Matthew Hennessy

Example 3.2.3. Consider the following three networks,

∆1 = ∆l + k :loc[d, {l}] = d t� -
l k

∆2 = ∆l + k :loc[d, ∅] = d t
l k

∆3 = ∆l + k :loc[a, ∅] = d d
l k

These are the effective networks for the system l[[a!〈k〉]] in the three configura-
tions ∆l . Ni, where Ni are defined by

N1 ⇐ (ν k : loc[d, {l}]) l[[a!〈k〉]]

N2 ⇐ (ν k : loc[d, ∅])

Location and Link Failure in a Distributed π-calculus 27

l[[a!〈k2, k3〉.P]] is effectively running on the following internal network:

d d

d

d

-�
���*

����

HHHj
HHHY

6

?

l k1

k3

k2

(8)

Let us now see to what knowledge of this internal network can be gained by an
observer O at site l, such as l[[a?(x, y).O(x, y)]]. Note, that prior to any interaction,
O is running on the network ∆l, and thus, is only aware of the unique location l.
By inputting along a, it can gain knowledge of the two names k1 and k2, thereby
evolving to l[[O(k2, k3)]]. Yet, even though it is in possession of these two names,
it cannot discover the link between them, due to the fact that it is not aware of
the local name k1; in other words, it cannot discover the full extent of the internal
network (8) above.

This means that, there is now a difference between the actual network being
used by the system,

28 Adrian Francalanza and

Location and Link

30 Adrian Francalanza and Matthew Hennessy

L, denoted and defined as:

Lf {l1, . . . , ln}
def
=

n[

i=1

Lf li

Finally, if C = {k1, . . . , kn} is a set of locations representing connections, and
l is a location such that l < C, then l↔C denotes the component defined as:

l↔C
def
= {〈k, l〉, 〈l, k〉, 〈k, k〉 | k ∈ C} ∪ {〈l, l〉}

where locations in C are symmetrically related to l, while l is also related to itself.
In the resultant component l↔C, all the locations in C in the component l↔C
are connected as a star formation to l and as a result, all locations are reachable
from one another in at most two accesses by going through the central node l.
Using previous shorthand notation, we could have alternatively defined l↔C as:

l↔C
def
= {l↔k, | k ∈ C}

�

Lemma 3.3.4 (Subtracting a Component from a Linkset). For any linkset L
and component K such that K ⊆ L, the set L/K is also a linkset.

Proof. Immediate from the fact that L can be expressed as
Sn

i=1Ki where K
must be equal to one Ki. Thus, if K = K j, the set

Sn
j,i=1Ki, which translates to

L/K , would still be a linkset. �

We now revert our discussion back to effective network representation, and
show how the definition of components facilitates the procedure for extending
networks.

Definition 3.3.5 (Augmenting effective networks). Let n be fresh to the net-
work Σ and C be a set of locations such that C ⊆ dom(ΣO). Then we define the
operation Σ + n :T as:

• Σ + n : ch
def
= 〈ΣN ∪ {n},

Location and Link Failure in a Distributed π-calculus 31

In the above definition, extending a network with a fresh channel is trivial;
adding a fresh dead node is similarly simple, due to the fact that Σ does not repre-
sent dead nodes or links to dead nodes explicitly. The only subcase that deserves
some explanation is that of adding fresh live nodes. A fresh live location is added
to either ΣO or ΣH depending on its links. If it is not linked to any observable
location, C ∩ dom(ΣO) = ∅, then the new fresh location is not reachable from
the context and is therefore added to ΣH . If, on the other hand, it is linked to an
observable location, C∩dom(ΣO) , ∅, then it becomes observable as well. There
is also the case where the fresh location is linked to both observable and hidden
locations, still represented above by the case where C ∩ dom(ΣO) , ∅; in such a
case, the fresh location, together with any components in the hidden state linked
to it, that is ΣHfC, become observable and thus transfered from ΣH to ΣO. The
following example elucidates this operation for extending effective networks.

Example 3.3.6. Consider the effective network Σ, representing six locations
l, k1, . . . , k5:

Σ = 〈{l, k1, k2, k3, k4, k5}, {l↔ l}, {k1↔k2, k2↔k3, k4↔k4}〉

Accroding to Definition 3.3.2, l is the only observable location by the context;
locations k1..4 are alive but not reachable from any observable location while the
remaining location, k5, is dead since it is not in dom(ΣO ∪ H). Moreover, the
linkset representing the hidden state, ΣH , can be partitioned into two compo-
nents, K1 = {k1 ↔ k2, k2 ↔ k3} and K2 = {k4 ↔ k4} whereas the linkset rep-
resenting the observable state, ΣO, can only be partitioned into one component,
itself.

The operation Σ+k0 :loc[a, {l}] would make the fresh location, k0, observable
in the resultant effective network since it is linked to, thus reachable from, the
observable location l. On the other hand, the operation Σ + k0 : loc[a, ∅] would
make k0 hidden since it is a completely disconnected node, just like k4. The
operation Σ+k0 :loc[a, {k1}] would still make k0 hidden in the resultant effective
network, since it is only link to the hidden node k1. Finally, the operation Σ +
k0 : loc[a, {l, k1}] intersects with both ΣO and ΣH . This means that k0 itself
becomes observable, but as a side effect, the components reachable through it,
that is ΣH f {l, k1} = K1, becomes observable as well. Thus, according to
Definition 3.3.5, the updated network translates to:

Σ + k0 :loc[a, {l, k1}] =
〈 ΣN ∪ {k0}, ΣO ∪ (k0↔{l, k1}) ∪ (ΣHf {l, k1}), ΣH/(ΣHf {l, k1}) 〉
〈 ΣN ∪ {k0}, ΣO ∪ {k0↔ l, k0↔k1} ∪ K1, ΣH/K1 〉

〈 ΣN ∪ {k0}, {l↔k0, k0↔k1, k1↔k2, k2↔k3}, {k4↔k4} 〉

�

32 Adrian Francalanza and Matthew Hennessy

Table 12. Network Operational Rules(2) for DπF

Assuming Σ ` l : alive

(l-kill)

Σ . l[[kill]]
τ
−→ (Σ − l) . l[[0]]

(l-brk)

Σ . l[[break k]]
τ
−→ Σ − (l↔k) . l[[0]]

Σ ` l↔k

(l-halt)

Σ . N
kill:l
−−−→ (Σ − l) . N

Σ `obs l : alive

(l-disc)

Σ . N
l=k
−→ Σ − (l↔k) . N

Σ `obs l↔k

(l-go)

∆ . l[[go k.P]]
τ
−→ ∆ . k[[P]]

∆ ` k← l

(l-ngo)

∆ . l[[go k.P]]
τ
−→ ∆ . k[[0]]

∆ 0 k← l

(l-ping)

∆ . l[[ping k.PdQe]]
τ
−→ ∆ . l[[P]]

∆ ` k← l

(l-nping)

∆ . l[[ping k.PdQe]]
τ
−→ ∆ . l[[Q]]

∆ 0 k← l

(l-newc)

∆ . l[[(ν c :ch) P]]
τ
−→ ∆ . (ν c :ch) l[[P]]

(l-newl)

∆ . l[[(ν k :loc[S, C]) P]]
τ
−→ ∆ . (ν k :loc[S, D]) l[[P]]

loc[S, D] = inst(loc[S,C], l,∆)

Let us now return to the defintion of our lts for DπF. The transitions between
effective configurations (9) are determined by the rules and axioms already given
in Table 6 from Section 2.3, together with the new rules in Table 12 and Table 13.
Most of the rules in Table 12 are inherited directly from their counterpart reduc-
tion rules in Table 10. The new rule is (l-disc) which introduces the new label
l= k and models the breaking of a link from the observing context, in the same
fashion as (l-fail) in Table 8 models external location killing. Both of these rules
are

Location and Link Failure in a Distributed π-calculus 33

Table 13. Contextual Operational Rules(3) for DπF

(l-open)

Σ+n :T . N
(ñ:̃T)l:a!〈V〉
−−−−−−−−→ Σ′ . N′

Σ . (ν n :T)N
(n:U, ñ:̃T)l:a!〈V〉
−−−−−−−−−−−→ Σ′ . N′

l, a , n ∈ V, U = T/ΣD

(l-weak)

Σ+n :T . N
(ñ:̃T)l:a?(V)
−−−−−−−−→ Σ′ . N′

Σ . N
(n:T, ñ:̃T)l:a?(V)
−−−−−−−−−−−→ Σ′ . N′

l, a , n ∈ V, (Σ + ñ :̃T) `obs T

(l-rest)

Σ+n :T . N
µ
−→ Σ′+n :U . N′

Σ . (ν n :T)N
µ
−→ Σ′ . (ν n :U)N′

n < fn(µ)

(l-rest-typ)

Σ+k :T . N
(ñ:̃T)l:a!〈V〉
−−−−−−−−→ (Σ+ñ : Ũ) +k :U . N′

Σ . (ν k :T)N
(ñ:̃U)l:a!〈V〉
−−−−−−−−→ Σ+ñ : Ũ . (ν k :U)N′

l, a , k ∈ fn(T̃)

(l-par-ctxt)

Σ . N
µ
−→ Σ′ . N′

Σ . N|M
µ
−→ Σ′ . N′|M

Σ . M|N
µ
−→ Σ′ . M|N′

Σ ` M

(l-par-comm)

↑ (Σ) . N
(ñ:̃T)l:a!〈V〉
−−−−−−−−→ Σ′ . N′ ↑ (Σ) . M

(ñ:̃T)l:a?(V)
−−−−−−−−→ Σ′′ . M′

Σ . N|M
τ
−→ Σ . (ν ñ : T̃)(N′|M′)

Σ . M|N
τ
−→ Σ . (ν ñ : T̃)(M′|N′)

tleties are required to deal with the interaction between scoped location names
and their occurrence in location types. For instance, the rule (l-open) filters the
type of scope extruded locations by removing links to locations that are already
dead and that will not affect the effective network Σ; this is done through the
operation T/ΣD defined in the Appendix. A side condition is added to (l-weak),
(Σ + ñ : T̃) `obs T, limiting the types of imported fresh locations to only contain

34 Adrian Francalanza and Matthew Hennessy

locations which are externally accessible, since intuitively, the context can only
introduce fresh locations linked to locations it can access. The internal commu-
nication rule (l-par-comm) also changes slightly from the one given earlier for
DπLoc; communication is defined in terms of the system view (↑ (Σ)) rather than
the observer view dictated by Σ. The intuition for this alteration is that internal
communication can still occur, even at locations that the observer cannot access,
thus we denote the ability to output and input of systems with respect to the
maximal observer view ↑ (Σ). Finally, a completely new rule is (l-rest-typ), which
restricts the links exported in location types if one endpoint of the link is still
scoped. The utility of this rule is illustrated further in the following example.
The rules (l-rest) and (l-par-ctxt) remain unchanged for DπLoc.

Example 3.3.7. Let us revisit Example 3.3.1 to see how the effect of the ob-
server O on M1, running on the effective network Σl having only one location l
which is alive, that is Σ(∆l). This effectively means calculating the result of M1

performing an output on a at l.
It is easy to see that an application of (l-out), followed by two applications of

(l-open) gives

Σl + k1 : {l} . M′1
α
−→ Σl + k1 : {l} + k2 : {k1} + k3 : {k1, k2} . l[[P]] (10)

where M′1 is (ν k2 : {k1})(ν k3 : {k1, k2})l[[a!〈k2, k3〉.P]] and α is the action (k2 :
{k1}, k3 : {k1, k2})l : a!〈k2, k3〉. Note that (l-rest) can not be applied to this judge-
ment, since k1 occurs free in the action α. However (10) can be re-arranged to
read

Σl + k1 : {l} . M′1
α
−→ Σl + k2 :∅ + k3 : {k2} + k1 : {l, k1, k2} . l[[P]]

moving the addition of location k1 in the reduct to the outmost position. At this
point, (l-rest-typ) can be applied, to give

Σl . M1
β
−→ Σl + k2 :∅ + k3

p56638 -2.16001 Td
(1l4.3462 Tf
5.98652 0 Td
(u7lR57 14.3/R71 10.04 Tf
-1 Td
4462 Tf
y4
(1)Tj
/-2.42.16001 T8.4 z 0 Td
(tTd
(1)Tj
/R63 6.3832 -2.l.3462 Tf
5.98652 Tf
5.51953 0 Tdo(0 14.1)Tj
/R60 14.3 Tf
6.36316 -2.16001 Td
(1)Tj
/R54 14.3462 Tf
5.75999 2.16001 Td
(g)Tj
/R60 14.3462 Tf
4.67686 0 Td
(;)Tj
/R46 14.3462 Tf
5.9864(2)Tj
/R54 14.3462 Tf
5.76001 2.16001 Td
001 Td
(.)Tj
/462 Tf
13.5576 0 Ti2 Tf
4.67686 0 Td
(l)Tj
/R60 14.3462 Tf
3.95957 0 Td
(;)Tj
/R46 14.3462 Tf
5.98652 0 Td
(2)5576 0 TinTd
(2)i)Tj
/R57 14.362 Tf
3.95c98 u54 14.0.4274 0 Td
(+)Tj
/R46 14.347nuc3462tTd
(1)T)Tj
çnuctR46 14.3462 Tf
4.757 14.3462 Tf
-145.2692298 0 7j
/R63 10.0423 Tf
r21.4624 0
(a)Tj
/R295 Td
(�)Tj
7423 Tf
6.4 -2.16001 14.3462ntinTdj
/R46 14.3�.34 Tf
y4
(1)Tj
/-2.42
/R46 14.3462 Tf
12.Tj
/R46 14sc84.363462 Tf
4.9 0 Td
(M)Tj
/R71 10.0423650.6 -9.83999 Td
(1)Tj
/R63 10.0423 y43 0 Td
(f)Tj
/R46 14.3462 Tf
4.67686 0 Td
d
())Tj
/R46 14.3462 Tud
(M)Tj
/R71 15 0 Td
(6R46 1j
/R4t0.3
1.91162 R46 14.3462 Tf
4.67687.108
1.91162 R71 10.0423 Tf
6.36316 -2.16001 Td
(1)Tj
/R54 14.3462 Tf
5.75999 2.16001 Td
(g)Tj
/R60 14.3462 Tf
4.67686 0 Td
(;)Tj
/R46 14.3462 Tf
5.98.0423650.6 -9.83R71 10.0423 Tf
6.37664 -2.3074 0 Td
(+)Tj
/R46 14.3462 Tf
12.3498 0 Td
(k)Tj
/R71 10.0423 Tf
6.39
(a)Tj
/R295 Td
(�)T.79165 0 Td
(k)Tj
/R71 10Tj
/R295 i 15 0 Td
(6R46 1j
/R4t007R29 14.34,9 14.346294 0 Td
(intu
7.78652
(still)Tj
-4374 0 T3.2465 0 Td
(�)Tj
/R96 10.0421325883498 0 Tfi7 0
11.7591 0414.3462 T(ely)Tj
1.62996 0 Td
(P4 -2.1
(of)6 0 Td
(.1 0 0 516 -12 Tf
7.9168 6001 ref
7.187662 0964 0 Td
Tf
50.3518 0 Td
(l)Tj
/5.33f)Tj
/R46 0 Td
(;)Tj
/R46 14.346250 Td Tf
6.6 2.16001 Td
(+)Tj
/R46 14.340423 Tf
6.37754 -2.159s)Tj
14.39i 0 Td
124.183498 0 Tbound
11.75defin2Tj
-439.4j
14.2 Tf
4.343 Tf
12.07001 Td
(;)Tj975999 2.11601 Td
(th82Tj
21.5824 0 Td
(ob8462 Tf
5.879sidu0 1 86.R46 Tf
12.07Tj
14.0149 0 Td
(w)Tj
15.3549ctxt2.76001 2.rep79senta/R46 13
1.1 11f
9.23953 0 Tf
, 0 Td
(applied,)Tj
4Tj
280.7685 0 Td
(on)
(outmost)Tj
50.139 0 Td
(position.)Tj
55.2532 0 Td
(At)T48
18.2345 0 Td
(this)Tj
-438.13 -17.28l)Tj
/R57 14.3462 Tf
6.72 2.15999 Td
(+)Tj
/((l-rest-typ))Tj
/R29 14.346462 Tf
12.3498 0 Td
(k)Tj
/R71 10.04236 14.347nuc3462tTd
(1(applied,)Tj
49.2188 0 Td
(to)Tj
14.747 0 Td
(gi)Tj
l)Tj
/R57 14.3462 Tf
6.72 2.15999 T8 Td
57 14.3462 Tf
-145.269 -30.12 Td
(-2.16001 142.3498 0 Td
(k)Tj
/R71 10.0423 Tf
6.37017 -2.16001 Td
(2)Tj
/R29 14.3462 Tf
7.34.3462 Tf
9.83669 0 Td
(M)Tj
/R71 10.0423 Tf
12.0033 -2.16001 Td
(1)Tj
/R63 10.0423 Tf
17..16001 Td
(1)Tj
234699 2.1600as3549ctx660Td
(�)Tj
/R29/R29
(thus)Tj
non-tr9sidu0 1 86.R46 Td
(M)T.98652 Tf
5.54
7.34.3462 Tf
9.83669 0 Td
(M)Tj
/R71 10.0423 Tf
12.0033 -2.16001 Td
(1)Tj
/R63 18 0 Td0-3lating)Tj
66-455.04 -17.28 Td
Tj
/R71 108(outmost)Tj
i.R46 Tf
12.0n865522-(1)Tj
/R63 18 0 Td0-3lating)Tj
66-455.04 -17.28 Td
Tj
/R71 108(outmost)Tj
i.Riii4.62996 0 Td
(P4 -2.1
(of)6 0 Td
(.1 0 0 03)Tj
/Rp/R57 14.67686 0 Td
(;)Tj
/R46 14.3462 Tf
5.98.03)Tj
/Rp/R57 14.676p))Tj
/R29 ./R464699 2.160aTj
/R46 14.3462 Tf
5.98.03)Tj
/Rp/R57 14.65999 .5.7600435.071 716a3m42.77 0 a# T
(of)6 0 Td
(.1 0 0 03)Tj
/Rp/R57 14.67686 0 Td
(;)Tj
/R46 14.3462 Tf
5.98.03)Tj
/Rp/R57 uc3462tTd
(1(applied,)Tj
49.2188 0 Td
()Tj
/Rp/R57 uc0 Ti2 Tf
4.67686 0 Td
(Tf
927 14.3462 Tf
-14c
/R57 c0 Ti2 Tf
4.67)Tj
/5r Tluatj
7.18482T)Tj
0 Td
(;)Tj
/28 Td
Tj
/R71 13)T04.698 0 7j
/R63h108(outmost)Tj
i.R46 9
4.61.98652 0 Td
(k)Tf
5.98652 Tf
5.51953 0 Tdo(0 14.1)Tj
/R60 14.3 Tf
6.36316 -2.16001 Td
(1)Tj
/R54 14.386716001 Td
001 Td
(.)Tj

(k)Tj
/R71 10.048/R46 14.3462 Tf
4.79163 0 Td
(l)Tj
/R29 14.3462 Tf
9.35952 0 Td
(:)Tj
/R46 14.3462 Tf
9.23953 0 Td
(a)Tj
/R29 14.3462 Tf
7.18745 0 ()Tj
/R46 14.3462 Tf
4.79165 0 Td
(k)Tj
/Rd
(a)Tj
/R29 19f
5.15029 0 TTd
(read)Tj
/R57 14.3462 Tf
52.92 -24.36 Td
(�)Tj
/R96 10.0423 Tf
6.37$0 Tf
, 0 Td
(applied,)Tj45.98652 0 Td
(k)d
(�)Tj
/R96 10.0423 Tf
8.4 -2.15999 Td
(l)Tj
/R54.79165 0 Td
(k)Tj
/Rd
(a)Tj
/R29 1R46 14.3462 Tf108(outmost)Tj
i.R46 Tf
12.0n865522-(1)Tj
/R63 18 0 Td0-341375g
applied,: a

Location and Link Failure in a Distributed π-calculus 35

and may be represented diagramatically by:

d

d

d

6

?

l

k3

k2

where the links of hidden components are denoted with dashed lines. �

With these actions we can now define in the standard manner a bisimulation
equivalence between configurations, which can be used as the basis for contex-
tual reasoning. Let us write

Σ |= M ≈wrong N

to mean that there is a (weak) bisimulation between the configurations Σ .M and
Σ . N using the current actions. This new framework can be used to establish
positive results. For example, for Σl,k = 〈{a, l, k}, {l↔k}, ∅〉, one can prove

Σl,k |= l[[ping k. a!〈〉d0e]] ≈wrong k[[go l.a!〈〉]]

by giving the relation ∈Td
⇐con×}ur〉1.346∈←T{
10.3006}d
⇐mar76←T7064←-∈3.760.04∈3←To6∈←T{
⇒T|
∈0.74∈4←0←Td
⇐con×}urat〉ons⇒T|
/R57←14.346∈←T{
∀5.3435←0←Td
⇐�⇒T|
/R60←14.346∈←T{
10.43∈5←0←Td
⇐.⇒T|
/R46←l
⇐con×}urat〉ons⇒T|
/-1751∈←Tdl3kTd
⇐.⇒TPC←1
ID←−33kTd
⇐.⇒TPC←1
ID←507{
4.7∃163←0←Td
∃-r∀7.⇒T|r1←0←Td
∃-33n×}urat〉ons

36 Adrian Francalanza and Matthew Hennessy

Example 3.3.8. Let us consider a slight variation on the system M1 used in
Example 3.3.1 and Example 3.3.7:

M2 ⇐ (ν k1 : {l})(ν k2 : {k1})(ν k3 : {k1})l[[a!〈k2, k3〉.P]]

again running on the simple (extended) network Σl. Note that here

Location and Link Failure in a Distributed π-calculus 37

In order to obtain a bisimulation equivalence which coincides with reduction
barbed congruence it is necessary to abstract away from

38 Adrian Francalanza and Matthew Hennessy

Table 14. The derived lts for DπF

(l-deriv-1)

Σ . N
µ
−→ Σ′ . N′

Σ . N
µ
7−→ Σ′ . N′

µ ∈ {τ, kill : l, l=k}

(l-deriv-2)

Σ . N
(ñ:̃T)l:a!〈V〉
−−−−−−−−→ Σ′ . N′

Σ . N `
(ñ:̃L)l:a!〈V〉
−−−−−−−−→ Σ′ . N′

L̃ = lnk(ñ :̃T,Σ)

(l-deriv-3)

Σ . N
(ñ:̃T)l:a?(V)
−−−−−−−−→ Σ′ . N′

Σ . N `
(ñ:̃L)l:a?(V)
−−−−−−−−→ Σ′ . N′

L̃ = lnk(ñ :̃T,Σ)

then we do not add anything to either ΣO or ΣH as is the case for T = ch. Based
on this definition of Σ+n :T, we give the following definition for lnk(n :T,Σ):

lnk(n :T,Σ)
def
=

(
(n↔C) ∪ (ΣHfC) if T=loc[a, C] and C∩loc(ΣO),∅
∅ otherwise

This function is extended to sequences of typed names in the obvious man-
ner:

lnk(n, ñ :T, T̃,Σ) = lnk(n :T,Σ), lnk(ñ : T̃,Σ′)

where Σ′ denotes Σ + n : T. �

These revised actions give rise to a new (weak) bisimulation equivalence over
configurations, ≈, defined in the usual way, but based on derived actions. We use

Σ |= M ≈ N

to mean that the configurations Σ . M and Σ . N are bisimilar.

Example 3.4.3. Here we re-examine the systems in Example 3.3.8 and Exam-
ple 3.3.9. We recall that in Example 3.3.8 we had the following actions with
respect to the original lts: -

Σl . M1
µ1
−→ Σ + k2 :∅ + k3 : {k2} . (ν k1 : {l, k2, k3}) l[[P]]

Σl . M2
µ2
−→ Σ + k2 :∅ + k3 :∅ . (ν k1 : {l, k2, k3}) l[[P]]

But Σl contains only one accessible node l; extending it with the new node k2,
linked to nothing does not increase the set of accessible nodes. Further increasing
it with a new node k3, linked to the inaccessible k2 (in the case of Σ . M1) also
leads to no increase in the accessible nodes. Correspondingly, the calculations
of lnk(k2 :∅,Σ) and lnk(k3 : {k2}, (Σ + k2 :∅)) both lead to the empty link set.

Location and Link Failure in a Distributed π-calculus 39

Formally, we get the derived action

Σ . M1
α
7−→ Σ + k2 :∅ + k3 : {k2} . (ν k1 : {l, k2, k3}) l[[P]]

where α is (k2 :∅, k3 :∅)l : a!〈k2, k3〉. Similar calculations gives exactly the same
derived action from M2:

Σ . M2
α
7−→ Σ

42 Adrian Francalanza and Matthew Hennessy

Definition 4.1.7 (Typed Relations for DπF). A typed relation over extended
configurations is a binary relation between such configurations with the property
that

Σ.M R Σ′.N implies I(Σ) = I(Σ′)

We can mimic the notation in Definition 2.2.3 by writing

I |= Σ.M R Σ′.N

to mean that systems Σ . M and Σ′ . N are related by R and that both I(Σ) and
I(Σ′) coincide with I. �

The definition of contextuality depends on what a given I allows to be ob-
servable; for this we adapt Definition 2.2.4.

Definition 4.1.8 (Observables). For any I let:

• I ` l : alive, if l is in dom(IO); this implies that l is not only alive, but in the
accessible part of any Σ such that I(Σ) coincides with I.

• I ` l↔ k, if l↔ k ∈ IO; this implies that the link l↔ k is not only alive, but
in the accessible part of any Σ such that I(Σ) coincides with I.

• I ` T if T is either ch or loc[a, C] such that C ⊆ dom(IO).

We can now define the relation I ` O as:

• I ` l[[P]] if fn(P) ⊆ IN and I ` l : alive

• I ` (ν n :T)N if I ` T and (I + n :T) `obs N

• I ` M | N if I ` M and I ` N

We can now adapt the notation of Definition 2.2.4 as:

∆ `obs l :alive, l↔k, T, O
def
= I(Σ(∆)) ` l :alive, l↔k, T, O

Σ `obs l :alive, l↔k, T, O
def
= I(Σ) ` l :alive, l↔k, T, O

The intuition of ∆ `obs O and Σ `obs O are still the same as that of Defini-
tion 2.2.4: an observer O is restricted to the observable network. However, the
updated definition reflects the fact that the observable network is now not only
defined in terms of live nodes but live, reachable nodes. �

As a result of this adaptation, we can carry forward to the section the def-
inition of contextual typed relations, defined earlier in 2.2.5. However, before
we go on an define reduction barbed congruence for DπF terms, we need also to
update the notion of a barb; a barb is observable by the context in DπF, if the
location at which the barb occurs is alive and observable.

Location and Link Failure in a Distributed π-calculus 43

Definition 4.1.9. Σ . N ⇓a@l denotes an observable barb exhibited by the con-
figuration Σ .N, on channel a at location l. Formally, it means that ∆(Σ) .N −→∗

∆(Σ′) .N′ for some Σ′ .N′ such that N′ ≡ M|l[[a!〈V〉.Q]] and IΣ `obs l : alive. �

With these modifications, Definition 2.2.6 can be applied to obtain a defini-
tion of reduction barbed congruence for DπF, which we denote by

I |= Σ1.M1 � Σ2.M2 whenever I(Σ1) = I(Σ2)

Note that this enables us to compare aribtrary configurations, Σ1 .M1 and Σ2 .

M2, but it can be specialised to simply comparing systems running on the same
network. Let us write

Σ |= M � N

to mean that I(Σ) |= Σ.M � Σ.N. Then, for example, the informal notation (7)
used in Section 3.2 can be taken to mean

Σ(∆) ` M � N

The second main result of the paper can now be stated:

Theorem 4.1.10. Suppose I(

44 Adrian Francalanza and Matthew Hennessy

We start by proving that the derived lts is closed over well formed effective
configurations. We prove this with the aid of the following lemma, stating that
there is also a special relationship between silent actions and residual networks.

Lemma 4.2.1. Internal transitions do not change the state of the network, un-
less a kill or a break l process in the configuration itself is consumed. Stated

otherwise, if Σ . N
τ
7−→ Σ′ . N′ then Σ′ is either:-

1. Σ

2. Σ − l

3. Σ − l↔k

Proof. A straightforward induction on the inference of Σ . N
τ
7−→ Σ′ . N′. �

Proposition 4.2.2 (Closure). The derived lts given in Definition 3.4.1 forms a
binary relation between well-defined effective configurations. Stated otherwise,

if Σ ` N and Σ . N
µ
7−→ Σ′ . N′ then Σ′ ` N′.

Proof. By case analysis on the form of µ. We use Proposition 4.1.2 when µ is
an external action and Lemma B.0.1 in sub-cases where we need to show that
Σ + n :T is still a valid effective network. When µ is an internal action, µ = τ, we
use Lemma 4.2.1. �

The next important sanity check for our lts is that our formulation of internal

activity, namely
τ
7−→, is in agreement, in some sense, with the reduction seman-

tics.

Proposition 4.2.3 (Reductions correspond to τ-actions).

• Σ . N −→ Σ′ . N′ implies Σ . N
τ
7−→ Σ′ . N′′ for some N′′ ≡ N′

• Σ . N
τ
7−→ Σ′ . N′ implies Σ . N −→ Σ′ . N′

Proof. The proof for the first clause is by induction on why Σ . N −→ Σ′ . N′.
The proof for the second clause is also by induction. Since the internal transition
rule (l-par-comm) is defined in terms of input and output actions, we make use of
Lemma 4.1.5 in our induction. �

We now embark on the main task of this section, that of showing that our
bisimulation, ≈, is contextual. This proof relies heavily on the Composition and
Decomposition Lemmas stated below, explaining how actions can be composed
of, or decomposed into, other actions. Both Composition and Decomposition
Lemmas make use of the following (specific) lemma, which is a slight variation
on Proposition 4.1.6; we note that we could not have used Proposition 4.1.6 in
this case because the type of the bound input action changes as shown below.

Location and Link Failure in a Distributed π-calculus 45

Lemma 4.2.4 (Input actions and the maximal observer view).

• If Σ . N `
(ñ:̃K)l:a?(V)
−−−−−−−−→ Σ′ . N′ then ↑ (Σ) . N `

(ñ:̃L)l:a?(V)
−−−−−−−−→ Σ′′ . N′ where K̃ =

L̃/dom(ΣH).

• If ↑ (Σ).N `
(ñ:̃L)l:a?(V)
−−−−−−−−→ Σ′ .N′ and I(Σ) ` l :alive then Σ.N `

(ñ:̃K)l:a?(V)
−−−−−−−−→ Σ′′ .N′

where K̃ = L̃/dom(ΣH).

Proof. The proof uses Lemma 4.1.5 to infer the structure of N and the progresses
by induction on the structure of N, similar to the proof for Proposition 4.1.6. �

Lemma 4.2.5 (Composition).

• Suppose Σ.M
µ
7−→ Σ′ .M′. If Σ ` N for arbitrary system N, then Σ.M|N

µ
7−→

Σ′ .) . N�
�

N, then ΣΣΣ

46 Adrian Francalanza and Matthew Hennessy

Hence, by (13), (14), (l-par-comm) and (l-deriv-1) we conclude

Σ . M|N
τ
7−→ Σ . (ν ñ : T̃)M′|N′

Σ . N|M
τ
7−→ Σ . (ν ñ : T̃)N′|M′

as required. �

Lemma 4.2.6 (Decomposition). Suppose Σ . M|N
µ
7−→ Σ′ . M′ where Σ `obs M

or Σ `obs N . Then, one of the following conditions hold:

1. M′ is M′′|N, where Σ . M
µ
7−→ Σ′ . M′′.

2. M′ is M|N′ and Σ . N
µ
7−→ Σ′ . N′.

3. M′ is (ν ñ : T̃)M′′|N′, µ is τ,herehereM′′7�∈.15996←Td.7976←′←Td
(M)T{
6.8∈881←′←Td
(9T|
/R46←1414.346∈
(N∈1|
/R63←1′e〉.∈8r←1′.′4∈3←T{
1′.45′8←5.15.1
/R-3T{
4←Td
(�6′←14.346∈←T{
7.439994|)T|
/R6′←14.346∈←T{
4.79163←′←Td
(�)T|
/R∈9←14.346∈←T{
3.∈∈9∈∈←′←Td
(N)T|
/R63←1′.′4∈3←T{
∈∈.3644←1′.44
∈65d
(′)T|
/(N)T|
/71
/R66←1′.′4∈596←.159/R668R46←14.346∈4〈er4Td
(′′)T|Ä|
5′.48|
/R66←1′.′4∈9965′596∈←T{
-1.4399971
/R66←1′.′4∈4|
/1∈1∈9←14.346∈←T-
(:55968R1.35∈5←′′)T|Ä|
5′.41T|
/R66←1′.′4∈-
(9∈3←d
(-1.35∈5←′′)T|LN)T|
/71
/R66←1′.′4∈59∈7∈∈d
(′′)T|
/R54←148|
/R66←1′.′4∈993541
/R63←1′lN)T|
/71
/R66←1′.′4∈∈.751596∈←T{
-:R54←148|
/R66←1′.′4∈∈.751596∈←T{
-aN)T|
/71
/R66←1′.′4∈5963Td
(′′)T|!Td
(M)T|
/R66←1′.′4∈993541
/R63←1′〈R54←148|
/R66←1′.′4∈995951
(′)T|
/VTd
(M)T|
/R66←1′.′4∈653357
/R6′←14〉←1′.′4∈3←T{
1′.45′8←54996′54∈3←T{68R46←1←5.15.16′′8′′′′′′.95996 Td
(00)Tj
/R29 14.3462 Tf
7.56001N

2. M′′′ ′′′′′′′′ ′′′′′′′M′′′′′′

.N28996 Td
(0)Tj
/R29 14.3462 Tf
7.67998 59966/R63 10.0423 T44 -23.64 Td
(3.)Tj
69 048 0 Td
(�)Tj
/R54 14.3462 Tf
15338(0)T-�6 14.34624Tf68R)

Location and Link Failure in a Distributed π-calculus 47

Moreover, by (20), (21) and Lemma 4.2.4 we deduce

↑ (Σ) . N
(ñ:̃K)l:a?(V)
−−−−−−−−→↑ (Σ)+ñ : T̃ . N′

where K̃ = L̃/dom(ΣH) as required. �

We now turn our attention to the actual proof for the main proposition of this
section, namely that bisimulation, ≈, is contextual. We prove this by inductively
defining the largest contextual relation whose base element are bisimilar config-
urations and then show its closure with respect to our derived actions. Based
on such a proof, we still require three (specific) lemmas to help us stitch up this
proof and guarantee closure. The first lemma is prompted by the first two condi-
tions of the Decomposition Lemma 4.2.6, namely that observing code may alter
the state of the network by inducing failure. We thus need the following lemma
to guarantee closure.

Lemma 4.2.7. Suppose Σ1.M1 ≈ Σ2.M2. Then there exists some M′2,M
′′
2 such

that:

• Σ2 . M2

τ̂

|==⇒ Σ2 . M′2 and (Σ2 − l) . M′2
τ

|==⇒ (Σ2 − l) . M′′2
such

48 Adrian Francalanza and Matthew Hennessy

Lemma 4.2.9 (Observers and Network extensions). If Σ+n : U `obs O where
Σ `obs U, that is n is only linked to locations in the observable part of Σ and thus
no hidden state is revealed as a result of the extension, then Σ+n : T `obs O for
any T where U = T/dom(ΣH).

Proof. The proof progresses by a simple induction on the structure of O. �

We are finally in a position to prove that our bisimulation, ≈, is a contextual
relation, according to Definition 2.2.5.

Proposition 4.2.10 (Contextuality of Behavioural Equivalence). If two con-
figurations are bisimilar, they are also bisimilar under any context. Stated oth-
erwise, I |= Σ1 .M1 ≈ Σ2 .M2 implies that for I ` O, T and n fresh in I we
have:

• I |= Σ1.M1|O ≈ Σ2.M2|O and I |= Σ1.O|M1 ≈ Σ2.O|M2

• I+n :T |= Σ1+n :T.M1 ≈ Σ2+n :T.M2

Proof. The proof progresses by the inductive definition a relation R as the largest

Location and Link Failure in a Distributed π-calculus 49

Lemma 4.2.11. If Σ1.M1 R Σ2.M2, then there exist some M′2,M
′′
2 such that:

• Σ2.M2
τ̂
=⇒ Σ2.M′2 and Σ2−l.M′2

τ
=⇒ Σ2−l.M′′2 , where Σ1−l.M1RΣ2−l.M′′2

• Σ2 .M2
τ̂
=⇒ Σ2.M′2 and Σ2−l↔ k . M′2

τ
=⇒ Σ2−l↔ k . M′′2 , where Σ1−l↔

k.M1 R Σ2−l↔k.M′′2

The proof for the above is by induction on why Σ1.M1RΣ2.M2; the base case
follows from Lemma 4.2.7 and the three inductive cases are straightforward.

To prove that R is a bisimulation, we take an arbitrary I |= Σ1 .M1 R Σ2 .M2

and any action Σ1 . M1
µ
7−→ Σ′1 . M′1; we then have to show that Σ2 . M2 can

match this move by performing a weak action Σ2 . M2

µ̂

|==⇒ Σ′2 . M′2 such that
I′ |= Σ′1 . M′1 R Σ′2 . M′2. The proof progress by induction on why I |=
Σ1 .M1 R Σ2 .M2; The first case, that is if I |= Σ1 .M1 ≈ Σ2 .M2 is immediate;
the remaining three cases require a bit more work. We here focus on the second
case, where

Σ1 . M1|O R Σ2 . M2|O because I|= Σ1 . M1 R Σ2 . M2 and I ` O (23)

which is also the most involving and leave the remaining two cases for the inter-
ested reader.

We thus assume Σ1 .M1|O
µ
7−→ Σ′1 .M′1. We decompose this action using the

Decomposition Lemma 4.2.6 and focus on the most difficult case, where

M′1 is (ν ñ : T̃)M′1|O
′, µ is τ and Σ′1 = Σ1 (24)

Σ1 . M1 `
(ñ:̃L)l:a!〈V〉
−−−−−−−−→ Σ1+ñ : T̃ . M′1 (25)

Σ1 . O `
(ñ:̃K)l:a?(V)
−−−−−−−−→ Σ1+ñ : Ũ . O′ where Ũ = T̃/dom(Σ1H) (26)

From (23) and (25) we derive the matching weak action

Σ2 . M2

(ñ:̃L)l:a!〈V〉
|==⇒ Σ′2+ñ : W̃ . M′2 R Σ1+ñ : T̃ . M′1 (27)

where we note the different types T̃ and W̃ at which the two networks Σ1 and
Σ2 are updated; there are updates to the hidden part of the networks which we
abstract away in the linktype L̃. From (27) and the hypothesis of (l-deriv-2) we
obtain

Σ2 . M2
(ñ:̃W)l:a!〈V〉
=⇒ Σ′2+ñ : W̃ . M′2

50 Adrian Francalanza and Matthew Hennessy

which can be decomposed as

Σ2 . M2 =⇒ Σ′′2 . M′′2 (28)

Σ′′2 . M′′2
(ñ:̃W)l:a!〈V〉
−−−−−−−−→ Σ′′2 +ñ : W̃ . M′′′2 (29)

Σ′′2 +ñ : W̃ . M′′′2 =⇒ Σ′2+ñ : W̃ . M′2 (30)

From (28), I ` O and (l-par-ctxt) we get

Σ2 . M2|O =⇒ Σ
′′
2 . M′′2 |O (31)

From the fact that I(Σ1) = I(Σ2) and I(Σ1+ ñ : T̃) = I(Σ′2+ ñ : W̃) from (27) we
know that the visible part of Σ′′2 and Σ′2 did not change as a result of the silent
transitions in (28) and (30) and thus

I(Σ′′2) = I(Σ′2) = I(Σ2) = I(Σ1) (32)

and by (32), (26) and Lemma 4.1.6 we get

Σ′′2 . O
(ñ:̃U)l:a?(V)
−−−−−−−−→ Σ′′2 +ñ : Ũ . O′ where Ũ = W̃/dom(Σ′′2 H) (33)

At this point we note that from (32) and (23) we derive

Σ′′2 `obs O (34)

and from (33), (34), Lemma 4.2.8 and Lemma 4.2.9 we obtain

I(Σ′′2 +ñ : Ũ) ` O′ and I(Σ′′2 +ñ : W̃) ` O′ (35)

Combining the derived action of (29) using (l-deriv-2), the derived action of (33)
using (l-deriv-3), (34), and the Composition Lemma 4.2.5, we obtain

Σ′′2 . M′′2 |O
τ
−→ Σ′′2 . (ν ñ : W̃)M′′′2 |O

′ (36)

From (30), (35) and (l-par-ctxt) we obtain

Σ′′2 +ñ : W̃ . M′′′2 |O
′ =⇒ Σ′2+ñ : W̃ . M′2|O

′

and by applying (l-rest) we get

Σ′′2 . (ν ñ : W̃)M′′′2 |O
′ =⇒ Σ′2 . (ν ñ : W̃)M′2|O

′ (37)

and thus by combining (31), (36) and (37) and then applying (l-deriv-1) we obtain
the matching move

Σ2 . M2|O
τ

|==⇒ Σ′2 . (ν ñ : W̃)M′2|O
′ (38)

The only thing remaining is to show that the two residuals are in R, that is

Σ1 . (ν ñ : T̃)M′1|O
′ R Σ′2 . (ν ñ : W̃)M′2|O

′

From (27) we know

I′ |= Σ1+ñ : T̃ . M′1 R Σ
′
2+ñ : W̃ . M′2 (39)

Location and Link Failure in a Distributed π-calculus 51

and from (35) and (39) we deduce I′ ` O′ and thus from the definition of R we
obtain

I′ |= Σ1+

52 Adrian Francalanza and Matthew Hennessy

T)M ⇓a@l implies (ΣM + n :T) . M ⇓a@l. Finally, contextuality is also trivial. As
an example, assume I(ΣM) ` O and we have to show that

ΣM . O | (ν n :T)(M) R ΣN . O | (ν n :U)N.

It is clear that ΣM + n :T `obs O and ΣN + n :U `obs O and thus by contextuality
of �, we have (ΣM + n : T) . O |M � (ΣN + n : U) . O |N from which the result
follows. �

Our external actions can affect both the system part of o2.23 0 Td
(both)Tj
29.8419 001Tf
53)19 31
(both)Tj0 Td
(part94 Td
(:)Tj
etwonte)Tj69 Td
(U)Tjork/R54 1448j
24.2182rep26.enta Td
a part94 Td
(:)Tjmain
(the)T96 Td
(�)Tdiectboth

th59 0 Td
(:)Tjd
Td
(part94 Td
(:)Tjdefin-7 0 Td
9163391 0 Td
(�)Tabi
(also)Tj7 14
17.1428 proofsresult)74677.1428 pr6.ente
(by)58.
21s by

Location and Link Failure in a Distributed π-calculus 53

x if and only if I(Σ) = I. Its implementation is based on the state observing
construct ping l.PdQe; the sub-process, verObsIk (x), first checks that all inacces-
sible locations in I, expressed as I′ + l : ∅ below, are indeed inaccessible and
then checks that the accessible locations, expressed as I + l : L where L , ∅,
satisfy the state declared in I, using the sub-process verLock(x, y1, y2, z). This
last subprocess, goes to the parameterised location x and checks that all its live
connections and dead connections correspond to y1 and y2 respectively, return-
ing a output on channel z if it is the case. The following lemma formalises the
intuition that when run at an appropriate location, verStatIk (x) does satisfy the
intended behaviour.

verStatIk (x)⇐ (ν sync)

0BBBBBBBBBBBBB@

verObsIk (sync)
| verNObs(loc

54 Adrian Francalanza and Matthew Hennessy

bound output. In order to complete the proof, we also require the following
lemma.

Lemma 4.3.4. Σ + n : T . N −→ Σ′ + n : T . N′ where n < fn(N) iff Σ ` N and
Σ . N −→ Σ′ . N′

Proof. The proofs are by induction on the structure of N for Σ ` N and by
induction on the derivations of Σ . N −→ Σ′ . N′ and Σ + n : T . N −→ Σ′ + n :
T . N′. �

Proposition 4.3.5 (Definability). Assume that for an arbitrary network repre-
sentation Σ, the network Σ+ denotes:

Σ+ = Σ + k0 :loc[a, dom(ΣO)],  :ch,  :ch

where k0,  and  are fresh to ΣN . Thus, for every external action µ and
network representation Σ, every non-empty finite set of names Nm where ΣN ⊆
Nm, every fresh pair of channel names ,  < Nm, and every fresh location
name k0 < Nm connected to all observable locations in ΣO, there exists a system
T µ(Nm, , , k0) with the property that Σ+ `obs T µ(Nm, , , k0), such
that:

1. Σ . N
µ
−→ Σ′+bn(µ) . N′ implies

Σ+ . N | T µ(Nm, , , k0) =⇒ Σ′+ . (ν bn(µ)) N′ | k0[[!〈bn(µ)〉]]

2. Σ+ . N | T µ(Nm, , , k0) =⇒ Σ′+ . N′,
where Σ′+ . N′ ⇓@k0 , Σ

′
+ . N′ 6⇓

@k0
implies that

N′ ≡ (ν bn(µ))N′′|k0[[!〈bn(µ)〉]]sof
34.7652 0 Td
(k)Tj
/R7116790423 Tf
10.491 5.27998 Td
(00)T1 18R54 14.3462 Tf
7.559981 -30.84 Td
(w)Tj
R46 26.52.3462 Tfhe� . N
�

) Σ′ +bn(µ) . N′ impliesN. The WTj
/Re34.7R467910.0423 Tll

Location and Link Failure in a Distributed π-calculus 55

is

k0[[!〈〉]] |

l

266666666666666666666664

266666666666666666666664

a?(X).(ν sync)

0BBBBBBBBBBBBBBBBBBBBBB@

mY

i=1

if xi<Nm.sync!〈〉 |
|X|Y

j=m+1

if x j=v j.sync!〈〉

| sync?()..sync?()| {z }
|X|

.go k0.(νc)

0BBBBBBBB@
verNwStatIk0

(x1..xm, c)

| c?(x).

?().!〈x1..xm〉

| go x

Location and Link Failure in a Distributed π-calculus 57

Subsequently we derive the sequence of reductions

Σ′+ . N′ | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]] −→
Σ′+ . N′ | k0[[!〈〉]] | k0[[?().!〈〉]] −→

Σ′+ . N′ | k0[[!〈〉]]
(43)

Combining the reductions in (40), (42) and (43) we prove the first clause.

For the second clause, the set of barbs Σ′+ . N′ ⇓@k0 , Σ
′
+ . N′ 6⇓

@k0
can

only be obtained through the sequence of reductions

Σ+ . N | l[[kill]] | k0[[!〈〉]] | k0[[ping l.ping l.d?().!〈〉e]] =⇒ (44)

Σ1
+ . N1 | l[[kill]] | k0[[!〈〉]] | k0[[ping l.ping l.d?().!〈〉e]] −→

Σ1
+ . N1 | l[[kill]] | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]] =⇒ (45)

Σ2
+ . N2 | l[[kill]] | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]] −→ (46)

Σ2
+ − l . N2 | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]] =⇒ (47)

Σ3
+ − l . N3 | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]] −→

Σ3
+ − l . N3 | k0[[!〈〉]] | k0[[?().!〈〉]] =⇒ (48)

Σ4
+ − l . N4 | k0[[!〈〉]] | k0[[?().!〈〉]] −→

Σ4
+ − l . N4 | k0[[!〈〉]] =⇒ (49)

Σ′+ . N′ | k0[[!〈〉]]

From (46) and Lemma 4.3.2 we deduce

Σ2
+ . N2 | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]] `

kill:l
−−−→

Σ2
+ − l . N2 | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]]

and by the inductive hypothesis of (l-par-ctxt), the fact that I(Σ2) allows kill : l
and Proposition 4.1.6, we derive

Σ2 . N2 kill:l
−→ Σ2 − l . N2 (50)

From (44), (45), (47), (48) and (49) and (r-par-ctxt) obtain

Σ+ . N =⇒ Σ1
+ . N1 =⇒ Σ2

+ . N2

Σ2 − l+ . N2 =⇒ Σ3
+ . N3 =⇒ Σ4

+ . N4 =⇒ Σ+ . N′
(51)

and from (51) and Lemma 4.3.4 we obtain

Σ . N =⇒ Σ1 . N1 =⇒ Σ2 . N2

Σ2 − l . N2 =⇒ Σ3 . N3 =⇒ Σ4 . N4 =⇒ Σ′ . N′
(52)

Finally, using Proposition 4.2.3 to convert the reductions in (52) into weak silent
actions and merging these with (50) we obtain as required

Σ . N
kill:l
|==⇒≡ Σ′ . N′ �

58 Adrian Francalanza and Matthew Hennessy

The result of Proposition 4.3.5 means that intuitively we can provoke the ac-

tion Σ . N
µ
=⇒ Σ′ . N′ by extending Σ with a fresh location k0 and fresh channels

 and  and placing N in parallel with T µ(Nm, , , k0) for a suitably
chosen Nm. But in the case of actions where bn(µ) , ∅ we do not get pre-
cisely the residual Π′ . N′ but instead Σ′′+ . (ν bn(µ)) N | k0[[!〈bn(µ)〉]]where
Σ′′ + bn(µ) = Σ′. We therefore state and prove a variant the extrusion lemma in
[9, 8], which enables us to recover the residual Σ′ . N′ from Σ′′+ . (ν bn(µ))N |
k0[[!〈bn(µ)〉]]; this lemma uses the preliminary lemma below, which we
chose to extract as an important step of the proof.

Lemma 4.3.6. Suppose δ, k0 are fresh to the systems M, k[[P(X)]]. Suppose also
that k ∈ C. Then:

Σ |= (ν ñ : T̃)(M | k[[P(ñ)]]) �
(ν ñ : T̃)(ν δ :ch)(ν k0 :loc[a, C])(M | k0[[δ!〈ñ〉]] | k0[[δ?(X).go k.P(X)]])

Proof. We note that the left hand system can be obtained from the right hand
system in two reductions, communication on δ and migrating from k0 to k, that
cannot be interfered with by any context. It is easy to come up with a bisimula-
tion proving that the two systems are reduction barbed congruent. �

Lemma 4.3.7 (Extrusion). Suppose , , k0 are fresh to the network rep-
resentations ΣM , ΣN , M and N. Then

I |= ΣM
+ . (ν ñ : T̃)M|k0[[!〈ñ〉]] � ΣN

+ . (ν ñ : Ũ)N|k0[[!〈ñ〉]]
implies ΣM + ñ : T̃ . M � ΣN + ñ : Ũ . N

Proof. We define the relation R as:

R =

(
〈ΣM + ñ : T̃ . M,ΣN + ñ : Ũ . N〉

������
ΣM
+ . (ν ñ : T̃)M|k0[[!〈ñ〉]] �

ΣN
+ . (ν ñ : Ũ)N|k0[[!〈ñ〉]]

)

and show that R satisfies the defining properties of �. It is obviously reduc-
tion closed. We here outline the proof for the barb preserving and contextuality
properties.

Suppose ΣM+ñ : T̃.M R ΣN+ñ : Ũ.

60 Adrian Francalanza and Matthew Hennessy

and by Lemma 4.3.6 and we get

I′ |= ΣM
+ . (ν ñ : T̃)M | k[[P]] | k′0[[δ!〈ñ〉]] � ΣN

+ . (ν ñ : T̃)N | k[[P]] | k′0[[δ!〈ñ〉]] (56)

from which, by definition of R, we derive I |= ΣM . M|k[[P]] R ΣN . N|k[[P]] as
required. �

Proposition 4.3.8 (Completness).

I |= Σ1 . M1 � Σ
2 . M2 implies I |= Σ1 . M1 ≈ Σ

2 . M2

Proof. Suppose Σ1 .M1
µ
7−→ Σ1

1 .M′1; we must find a move Σ2 .M2

µ̂

|==⇒ Σ2
1 .M′2

such that Σ1
1.M

′
1 � Σ

2
1.M

′
2. If µ is an internal move then the matching move is ob-

tained from the fact that � is reduction closed, together with Proposition 4.2.3. If
µ is an external action, then by choosing Nm so that it contains all the free names
in IN and choosing fresh , , k0, from the first part of Proposition 4.3.5

and the assumption Σ1 . M1
µ
7−→ Σ1

1 + bn(µ) . M′1 we obtain

Σ1
+ . M1|T

µ(Nm, , , k0) =⇒ Σ1
1+ . (ν bn(µ))M′1 | k0[[!〈bn(µ)〉]]

By contextuality and reduction closure of �, we know that there is a matching
move

Σ2
+ . M2|T

µ(Nm, , , k0) =⇒ Σ . N

for some Σ . N such that Σ1
1+ . (ν bn(µ))M′1 | k0[[!〈bn(µ)〉]] � Σ . N. This

in turn means that Σ . N ⇓@k0 and Σ . N 6⇓
@k0

and so the second part of
Proposition 4.3.5 now gives that Σ . N ≡ Σ2

1+ . (ν bn(µ))M′2 | k0[[!〈bn(µ)〉]]

for some Σ2
1+, M′2 such that Σ2 . M2

µ

|==⇒ Σ2
1 + bn(µ) . M′2. This is the required

matching move, since the Extrusion Lemma 4.3.7, gives us the required

Σ1
1 + bn(µ) . M′1 � Σ

2
1 + bn(µ) . M′2 �

5 Conclusions

We have presented a simple extension of Dπ, in which there is an explicit repre-
sentation of the underlying network on which processes execute, exhibiting both
node and link failures. Our main result is a fully-abstract bisimulation equiva-
lence with which we can reason about the behaviour of systems in the presence
of dynamic network failures. To the best of our knowledge, this is the first time
system bt knowledge, ork failures. M ailures. kno

62 Adrian Francalanza and Matthew Hennessy

Related work: There have been a number of studies on process behaviour in the
presence of permanent node failure only, in addition to our starting point [16].
That closest to our work is the already cited [2, 1]; as already mentioned, their
approach to developing reasoning tools is also quite different from ours. Rather
than develop, justify and use bisimulations in the source language of interest, in
their case πl and π1l, they propose a translation into a version of the π-calculus
without locations, and use reasoning tools on the translations. But most impor-
tantly, they do show that for certain π1l terms, it is sufficient to reason on their
translations. Elsewhere, permanent location failure with hierarchical dependen-
cies have been studied by Fournet, Gonthier, Levy and Remy in [6]. Berger [3]
was the first to study a π-calculus extensTj
-432.290ulu746 0 Tsd
(also)Tj
26..4549 0 Td
e184u52.0121 0 Td
(on)Tj
1d
(cited)Tj
32.1u,
(-calculu668 0 Td
(lsimy)Tj
34.154612 0762.2512 0 Ts(reason)Tj
54.7899 0 Td
d
(73 0 Td
(o Td
(ailure)tio27.569 0 Td
(with)Tj
29.3815 0 Td
(hieraTd
6.088j
13.1829 0 Td.6938 0 3.7463 0 Td
(opTd
(streason)5
10.3.978 -17c Td
(e)T143127475 0 Td
(in)Tjin).16001 Td
communid
(ailure)955 962.2512 0
(with)Tj
29.3815 0 Td
(his)Tj
1too2 0 Td
(�)whilhierarch81cal)Tj
71N16 118n.28 Tdch89.569 0 TdMerro)Tj
14.7ical)Tj
71d
(in)T165and4.9934 0 Td
(tFuzzattiTj
14.761tion)Tj
5[15)Tj
25.06903 0 Td
]15461236.62.2512 0emploaviour72 0.3084 0 T Td
(xtensTj
gua1.0349 0 Td
(on)Tj
18.6949 0 6 0 Tsd
(also)Tj
26.3462s)Tj
14.99sotdar(in)T56 0u52.0121 0462ult56 0 Td2Tj
1213.3029 0 Tdsourcestribierarch449009 0 Tdu
(1)Tj
2 -1casois

Location and Link Failure in a Distributed π-calculus 63

A Notation

Here we give the formal definitions for the various notation we have introduced
for extracting information from network representations, and for updating them.

A.1 DπLoc Notation

Recall that for DπLoc a network repsresentation Π consists of the tuple 〈N ,D〉,
where N is a set of names known and D is the set of dead locations. We thus
define the following judgements:

Π ` a :ch
def
= a ∈ ΠN (valid channels)

Π ` l :loc[d]
def
= l ∈ ΠN ∧ l ∈ ΠD (valid dead location)

Π ` l :loc[a]
def
= l ∈ ΠN ∧ l < ΠD (valid live location)

Π ` l : alive
def
= Π ` l :loc[a] (live locations)

Π ` k← l
def
= Π ` k :alive, l :alive (k accessible from l)

Π ` M
def
= fn(M) ∈ ΠN (valid systems)

We also define the following operations:

Π + a :ch
def
= 〈Π

〈

64 Adrian Francalanza and Matthew Hennessy

and Σ. We define

Location and Link Failure in a Distributed π-calculus 65

Σ` l :alive
def
= l ∈ dom(ΣO ∪ ΣH) (live locations)

Σ` l↔k
def
= l↔k ∈ ΣO ∪ ΣH (live link)

Σ`T
def
= fn(T) ⊆ ΣN (valid types)

Σ`n :T, ñ : T̃
def
= Σ ` T and Σ + n :T ` ñ : T̃

Σ`N
def
= fn(N) ⊆ ΣN (valid systems)

Σ`k← l
def
= ΣO `k← l or ΣO `k← l (accessibility)

Σ`kf l
def
= ΣO `kf l or ΣO `kf l (reachability)

∆` l :alive, l↔k, T, N
def
= Σ(∆)` l :alive, l↔k, T, N

I+n :L
def
= 〈IN∪{n}, IO∪L〉 (updates)

I` l :alive
def
= l ∈ dom(IO) (live locations)

I` l↔k
def
= l↔k ∈ IO (live link)

I`T
def
= fn(T) ⊆ dom(IO) (valid types)

I` l[[P]]
def
= fn(P) ⊆ IN and l ∈ dom(IO) (valid systems)

I` (ν n :T)N
def
= I`T andI+n : T ` N

I`N|M
def
= I`N andI`M

∆`obs l :alive, l↔k, T, N
def
= I(∆) ` l :alive, l↔k, T, N (terna519534462 3462 Tf
-judgment.5021 0 Td
())Tj
/R548.857462 Tf
-323.198 -21.84 Td
(�)Tj.34.024.3462 Tf
9.95251 0 Td
(‘)Tj
/R46 14.3462 Tf
8.27402 0-2.16001 Td
(obs)Tj4.3 14.346292 Tf
20.04 2.16001 Td
(l)Tj
/R29 14.346292 Tf
51953 0 Td
(:)Tj
/R45 14.3462 Tf
5.51953 0 Td
(ali)Tj
14.9866 0 Td
(v)Tj
7.06746 0 Td
(e)Tj
/R60 14.3462 Tf
6.47537 0 Td
(;)Tj
/R46 14.3462 Tf
8.38652 0 Td
(l)Tj
/R54 14.3462 Tf
5.51953 0 Td
($)Tj
/R46 14.3462 Tf
15.3467 0 Td
(k)Tj
/R60 14.3462 Tf
6.59536 0 Td
(;)Tj
/R84 14.3462 Tf
8.50654 0 Td
(T)Tj
/R60 14.3462 Tf
7.54612 0 Td
(;)Tj
/R46 14.3462 Tf
8.74653 0 Td
(N)Tj
/R71 10.0423 Tf
18.4642 8.4 Td
(def)Tj
/R57 14.3462 Tf
2.15999 -8.4 Td
(=)Tj
/R54 14.3462 Tf
19.1898 0 Td
(I)Tj
/R29 14.3462 Tf
9.35374 0 Td
(()Tj
/R57 14.3462 Tf
4.79163 0 Td
(�)Tj
/R29 14.3462 Tf
9.39253 0 Td
(()Tj
/R57 14.3462 Tf
4.63162 0 Td
(‘)Tj
/R46 14.3462 Tf
10.674 0 Td
(l)Tj
/R29 14.3462 Tf
5.51953 0 Td
(:)Tj
/R45 14.3462 Tf
5.51953 0 Td
(ali)Tj
14.9866 0 Td
(v)Tj
7.06746 0 Td
(e)Tj
/R60 14.3462 Tf
6.47537 0 Td
(;)Tj
/R46 14.3462 Tf
8.38652 0 Td
(l)Tj
/R54 14.3462 Tf
5.51953 0 Td
($)Tj
/R46 14.3462 Tf
15.3467 0 Td
(k)Tj
/R60 14.3462 Tf
6.59536 0 Td
(;)Tj
/R84 14.3462 Tf
8.50654 0 Td
(T)Tj
/R60 14.3462 Tf
7.54612 0 Td
(;)Tj
/R46 14.3462 Tf
8.74653 0 Td
(N)Tj
/R71 10.0423 Tf
18.4642 8 Td
(:)Tj
/R45-3 14.137 36 14.f
18Fina5ly195344684862 Tf
8.wDisto159991
6.7462 Tf
39operTf
52.50216 1489 14.3462ailurul9.49583R54362 Tf
8.23.0103-.344.33 1 14.4.f
18transind

66 Adrian Francalanza and Matthew Hennessy

B Auxilliary Proofs

We here prove a lemma that is used to show that our lts of § 3.3 is closed over
valid effective configurations.

Lemma B.0.1 (Valid Effective Network Updates). If Σ is a valid effective net-
work, n is fresh in Σ and the type T is a valid type with respect to Σ, denoted as
Σ ` T (see Appendix for definition) then Σ + n :T is a valid effective network.

Proof. The cases where T = ch and T = loc[d, C] are trivial so we focus our
attention to the case where T = loc[d, C]; at this point, according to Defini-
tion 3.3.5, we have two possible subcases:

• If C ∩ dom(ΣO) = ∅ then Σ + n :loc[a, C] has the form 〈ΣN ∪ {n}, ΣO, H ′〉
where H ′ = ΣH ∪ (l↔ C). To prove that this resultant network is a valid
effective network, we have to show that it adheres to the three consistency
requirements, defined earlier in Definition 3.3.2:

1. dom(ΣO) ⊆ loc(ΣN ∪ {n}). This is immediate from the fact that Σ is valid
and thus dom(ΣO) ⊆ loc(ΣN).

2. dom(H ′) ⊆ loc(ΣN ∪ {n}) and that H ′ is a linkset. The inclusion is
obtained from the fact that dom(ΣH) ⊆ loc(ΣN) and the assumption that
loc(loc[a, C]) ⊆ loc(ΣN). The fact that H ′ = ΣH ∪ l↔ C is a linkset is
immediate from the fact that l↔C is a component.

3. dom(ΣO) ∩ dom(H ′) = ∅. This is immediately obtained from the as-
sumptions that dom(ΣO) ∩ dom(ΣH) = ∅, n < ΣN and the condition for
this subcase, that is C ∩ dom(ΣO) = ∅.

• If (C ∩ dom(ΣO) , ∅) then Σ + n :loc[a, C] has the form 〈ΣN ∪ {n}, O′, H ′〉
where O′ = ΣO ∪ (l↔C ∪ (ΣHfC) andH ′ = ΣH/(ΣHfC). One again, we
have to prove that Σ + n :loc[a, C] satisfies the three consistency conditions:

1. dom(O′) ⊆ loc(ΣN ∪ {n}) and that O′ is a linkset. The proof here pro-
gresses similar to the second requirement of the previous subcase.

2. dom(H ′) ⊆ loc(ΣN ∪ {n}) and that H ′ is a linkset. The proof for the in-
clusion is a simpler version of the above subcases, while the requirement
thatH ′ = ΣH/ΣHfC is a linkset is obtained from the fact that ΣHfC
is a component and Lemma 3.3.4.

3. dom(O′) ∩ dom(H ′) = ∅. This is obtained from the assumptions that
dom(ΣO) ∩ dom(ΣH) = ∅, n < ΣN and the structure of O′ andH ′. �

Location and Link Failure in a Distributed π-calculus 67

References

[1] Roberto M. Amadio. An asynchronous model of locality, failure, and process mobility. In
D. Garlan and D. Le Métayer, editors, Proceedings of the 2nd International Conference on
Coordination Languages and Models (COORDINATION’97), volume 1282, pages 374–391,
Berlin, Germany, 1997. Springer-Verlag.

[2] Roberto M. Amadio and Sanjiva Prasad. Localities and failures. FSTTCS: Foundations of
Software Technology and Theoretical Computer Science, 14, 1994.

[3] Martin Berger. Basic theory of reduction congruence for two timed asynchronous π-calculi. In
Proc. CONCUR’04, 2004.

[4] Luca Cardelli. Wide area computation. In Proceedings of 26th ICALP, Lecture Notes in Com-
puter Science, pages 10–24. Springer-Verlag, 1999.

[5] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, March 1996.

[6] Cedric Fournet, Georges Gonthier, Jean Jaques Levy, and Remy Didier. A calculus of mobile
agents. CONCUR 96, LNCS 1119:406–421, August 1996.

[7] R.J. van Glabbeek and U. Goltz. Equivalence notions for concurrent systems and refinement of
actions (extended abstract). In A. Kreczmar and G. Mirkowska, editors, Proceedings 14th Sym-
posium on Mathematical Foundations of Computer Science, MFCS ’89, Pora̧bka-Kozubnik,
Poland, August/September 1989, volume 379 of lncs, pages 237–248. Springer-Verlag, 1989.

[8] Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a behavioural theory of
access and mobility control in distributed systems. Theoretical Computer Science, 322:615–
669, 2004.

[9] Matthew Hennessy and Julian Rathke. Typed behavioural equivalences for processes in the
presence of subtyping. Mathematical Structures in Computer Science, 14:651–684, 2004.

[10] Matthew Hennessy and James Riely. Resource access control in systems of mobile agents. In
Uwe Nestmann and Benjamin C. Pierce, editors, HLCL98: High-Level Concurrent Languages
(Nice, France, September 12, 1998), volume 16(3), pages 3–17. Elsevier Science Publishers,
1998.

[11] Matthew Hennessy and James Riely. Resource access control in systems of mobile agents.
Information and Computation, 173:82–120, 2002.

[12] K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical Computer
Science, 152(2):437–486, 1995.

[13] Kohei Honda and Nobuko Yoshida. A uniform type structure for secure information flow. In
29th Annual Symposium on Principles of Programming Languages. ACM, January 2002.

[14] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[15] Nestmann, Fuzzati, and Merro. Modeling consensus in a process calculus. In CONCUR: 14th
International Conference on Concurrency Theory. LNCS, Springer-Verlag, 2003.

[16] James Riely and Matthew Hennessy. Distributed processes and location failures. Theoretical
Computer Science, 226:693–735, 2001.

[17] Davide Sangiorgi and David Walker. The π-calculus. Cambridge University Press, 2001.

[18] Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: An approach to designing
fault-tolerant computing systems. Computer Systems, 1(3):222–238, 1983.

