

L ocation and Link Failurein a Distributed
m-calculus

ADRIAN FRANCALANZA and Ma™HEw HENNESSY

AsstracT. We develop a behavioural theory of distributed systems in the presence of failures. The
framework we use is that of Dx, a language in which located processes, or agents, may migrate
between dynamically created locations. These processes run on a distributed network, in which
individual nodes may fail, or the links between them may be broken. The original language, D, is
extended by a new construct for detecting and reacting to these failures together with constructs that
induce failure.

We define a bisimulation equivalence between these systems, based on labelled actions which
record, in addition to the effect actions have on the processes, the actual state of the underlying net-
work and the view of this state known to observers. We prove that the equivalence is fully abstract, in
the sense that two systems will be differentiated if and only if, in some sense, there is a computational
context, consisting of a network and an observer, which can see the difference.

Contents

1 Introduction e 1
2 Dnwithlocation failure 4
3 Locationand Link Failure e 19
4 Full-Abstraction e 39
5 Conclusions e 60
A CNOtation e 63
B Auxilliary Proofs 66

1 Introduction

It is generally accepted that location transparency is not attainable over wide-
area networks, [4], large computational infrastructures which may even span the
globe. Because of this, various location-aware calculi and programming lan-
guages have arisen in the literature; not only do these emphasise the distributed
nature of systems but they also assume that the various system components, pro-
cesses or agents, are aware of their location in the network, and perhaps, also
aware of some aspect of the underlying network topology. In these languages,
computations take place at distinct locations, physical or virtual, and processes
may migrate between the locations of which they are aware, to participate in
such computations.

It is also argued in [4] that failures, and the ability to react to them, are also an
inevitable facet of these infrastructures, which must be taken into account when
designing languages for location-aware computation. The

Adrian Francalanza and Matthew Hennessy
inv

Location and Link Failure in a Distributed m-cal culus 3

state of the system, to N’ in the usual manner, but it may also a_,‘i;ct the nature
of the underlying network. For example, an observer may extend the network
by creating new locations; we also allow the observer to kill sites, or in the
second framework, break links between sites, thereby capturing changes in the
behaviour of N in response to dynamic failures.

In the framework with link failures, the definition of these actions turns out
to be relatively sophisticated. Intuitively, the action (1) above is meant to simu-
late the interaction between an observer and the system. However, even though
the system and the observer may initially share the same view of the underlying
network, interactions quickly give rise to situations in which these views diverge.
In general, observers may not be aware of the status of all the nodes and links
in a network because they might be unreachable; the system, on the other hand
may reach such nodes through the knowledge of scoped names. So in (1) above,
the network representation IT needs to record the actual state of the underlying
network, together with the observers partial view of it. This in turn will require
developing variations on the actions (1) above, where the actual network repre-
sentations IT, are replaced by more abstract representations.

In Section 2 we treat the case of location failure. We define the language
DrlLoc, an extension of D * [11], with an additional operator ping I.P Q , for
checking the accessibility of a location IPe awe accessibthe

4 Adrian Francalanza and Matthew Hennessy

duction semantics is now given relative to network configuration, ranged over
by A, which record both the status of nodes and their connectivity. Interestingly,
ping I.P Q executed on site k, now checks whether | is accessible from k; it
may not be accessible either because | is dead or because the link between | and
k is broken. Moreover, in DxF, node creation is more complicated, since one
must also specify the connectivity of a new node; in DxF this is achieved using
a simple type system.

In=t 3.3 we present a variation of the actions (1) above for DnF. It turns out
that much of the information in the network representations A is irrelevant; for
example if a node

K

Location and Link Failure in a Distributed m-cal culus 5

Table 1. Syntax of typed DzLoc

|
Types
T,U ::= loc[S] .ch S,Ri=a d
Processes
P,Qu=ullv.P | u?(X).P H*u?(X).P Jfv=uP Q PQ
. (vn:T)P .gouP kil pinguP Q 0
Systems

M, N, O = I[P] NM JyniT)N
1

but the presence of this construct will facilitate the definition of the reduction
semantics.

There are three syntactic categories in DzLoc. The first, local processes
ranged over by P, Q, includes the standard w-calculus constructs for communica-
tion, alTV .P and a?(X).P, replicated input, ,a?(X).P, name restriction (vn:T)P,
where T types n as a channel or a location name, comparison ifv=u.P Q , in-
action, 0, and parallel composition, P Q. The values transmitted as part of a
communication, ranged over by V, consist of tuples of identifiers. When input
on a channel, they are deconstructed using patterns, ranged over by X; patterns
are simply tuples of variables, each having a unique occurrence.

The major innovation is a programming construct which allows processes to
react to perceived faults in the underlying communication network. In addition to
the Dz migration construct go |.P, [11], we add a testing construct, ping I.LP Q ,
inspired from [2, 1, 16]. This constructs acts as a conditional, based on the
perceived state of the location [; thus if | is reachable, it launched process P,
otherwise it launches Q

6 Adrian Francalanza and Matthew Hennessy

state of the scoped location (dead or alive).

In contrast to Dz, DrLoc uses also an additional third level of configurations.
At this level, we have a representation of the network on which the system is
running. A typical configuration takes the form

IT>N

where IT

Location and Link Failure in a Distributed n-calculus
Table 2. Local Reduction Rules for DrLoc

I
Assuming IT+ |:alive

(r-comm)

IT> [V -PT _I[a?(X)

8 Adrian Francalanza and Matthew Hennessy
Table 3. Network Reduction Rules for DrrLoc

I
Assuming IT+ | : alive

(r-go) (r-ngo)
> TfgokPl, T-K[PT ~ Tr>T[gokPl, 17> K[O]

IM¥k—I

(r-ping)

. o k-
IT> I[pingk.P Q] o I I[P]

(r-nping)
M- pngkP Q T, T=Ql
(r-new) (r-kill)

MNPl e (I[P T I, (1, 1)>1[0]

locations. Dynamic network faults are engendered in the obvious manner by (r-
kill), and finally (r-new), allows us to export locally generated new names to the
system level, as in Dr.

The rules in Table 4 are adaptations of standard rules for the n-calculus. For
Instance, the first rule, (r-str), states that the reduction semantics is defined up to
a structural equivalence, defined in the usual manner, as the least equivalence
relation on systems which satisfies the set of rules and axioms in Table 5. The
remaining reduction rules in Table 4 state that reduction is preserved by parallel
composition and name scoping operations on configurations. But note that the
rule for scoping, (r-ctxt-rest), uses an obvious notation IT + n : T for extending
network representations with new names, which is formally defined in the Ap-
pendix. Note also that this rule needs to allow for the type of the scoped name
to change; this is because types for locations actually carry dynamic state in-
formation, namely whether they are alive or dead, as explained in the following
example.

Example 2.2.2. Consider the following system

IT>k[go La?(x).P1 1[(vko:loc[a])(a!Tko .Q _go ko.kill)] (3)

where IT is the network representation 1.4, k, ati’b , consisting of the two live
locations I, k; the addition of the construct go kg. kill indicates that we wish to
consider the newly created location kg, as defective, and thus it may become
faulty some time in the future.

Location and Link Failure in a Distributed n-calculus 9
Table 4. Contextual Reduction Rules for DrrLoc

1
(r-str)
[T N’ —IT>N l_f>N;r [VsM IUVsM-—1UVsM’

I N";r Vs M’

r-ctxt-par
(r-ctxt-rest) (par)

IM+n:TeN [V+n:Us-M ft>N T H,DN, 1Y
IT>(vn:T)N I[">(vn: UM IT>N.M ¢ I >N'M
[IM> M\N o IvV» M\N’
1]
Table 5. Structural Rules for DrrLoc
| 1
(s-comm) NM-=MN
(s-assoc) (NM)M” =N (M M)
(s-unit) N.I[0] — N
(s-extr) (vn:T)(NM) = N (vn:T)M n ¢ fn(N)
(s-flip) (vn:T)(vm:U)N — (vm:U)(vn:T)N
(s-inact) (vn:T)N — N n ¢ fn(N)
|

As in Drr, an application of (r-go), based on the fact that both k and | are alive,
and (r-par-ctxt) on (3), yields

IT>1[a?(x).P1 1[(vko:loc[a])alTko .Q . go ko.Kill]

which can be followed by an application of (r-fork), (r-new) (and (r-par-ctxt)) to
launch a new location kg and get

> 1[a2(X).P1 _(vko:Loc[al)(I[a'Tko .Q] . I[go ko.killl)

At this point, we can perform a communication on channel a using (r-par-comm),
thereby and n (and

10 Adrian Francalanza and Matthew Hennessy
Finally, (r-kill), followed by (r-ctxt-par), can be used to kill ko and derive

(IT+ ko:loc[al) » I[P-Ko] I[QT kolkill]
(It + ko Tocld]) > IPHop] 1[QT kolO]

where the type of ko changes from loc[a] to 1loc[d], and thus, an application of
(r-ctxt-rest) reduces (5) to

IT> (vko: loc[dD)(1Pkl I[QT _kollO) (6)
|

This example also serves to illustrate another important point that we shall
refer to repeatedly in this report. In general, in a configuration

IT>N

IT denotes the network representation on which the system N is running. But
there may be subsystems of N which are running on extended (internal) net-
works. For example in (3) above, the subsystem Ifallkq .Q] is running with
respect to the network represented by (IT + ko : Loc[a]), while in (6) the subsys-
tem I[Q] is running with respect to (IT + ko : Loc[d]).

Reduction barbed congruence

In view of the reduction semantics, we can now adapt the standard approach
[9, 8] to obtain a contextual equivalence for DrrLoc; we use the variation first
proposed in [12]. We wish to compare the behaviour of systems running on the
same network; consequently we use the following framework, borrowed from

[8]:

Definition 2.2.3 (Typed Relation). A typed relation over systems is a family of
binary relations between systems, R, indexed by network representations. We
write IT = M R N to mean that systems M and N are related by R at index I,
thatis M Ry N, and moreover IT> M and IT> N are valid configurations. [

The definition of our equivalence hinges on what it means for a typed relation
to be contextual, which must of course take into account the presence of the
network. Our definition has two requirements:

1o, &F_‘ N so/ Y / ~‘,iok o} K_‘ p}\ \ so/,' =

Location and Link Failure in a Distributed m-cal culus 11

Definition 2.2.4 (Observers). The intuition of valid observer system O in a dis-
tributed setting IT, denoted as IT t 4,5 O, Is that O originates from some live
fresh location ko, migrates to any location in loc(ITy/) to interact with (observe)
processes there and then returns back to the originating fresh location ky to com-
pare its observations with other observers. For convenience, we often omit the
mentioning of the fresh locations ky and place observing code immediately at
locations in loc(ITy). We note that, according to the definition of the reduction
rule (r-ngo), observing code can never reach dead locations and we therefore have
to encode this in our definition of IT + o5 O. For convenience, we also disallow
observer to be located at scoped dead loactions, denoted as IT+ 4,5 T and defined
in the Appendix. IT+ gus O is recursively defined as:-

| TT+ops I[P] if fn(P)MlTN and IT+ |: alive
| TTtops (WNIT)N if ITtgps Tand (IT+N:T) t gps N
| H}obs M‘N if HfobsMandn}‘obsN [|

Definition 2.2.4, defining allowed observer systems, determines the defini-
tion of contextuality given below.

Definition 2.2.5 (Contextual typed relations). A typed relation R over config-
urations is contextual if:

(Parallel Systems)
[M=M®RN

e TT=M

12 Adrian Francalanza and Matthew Hennessy

Then =, called reduction barbed congruence, is the largest symmetric typed
relation over configurations which is:

| barb preserving
| reduction closed
| contextual n
We leave the reader to check that pointwise = is an equivalence relation.
Example 2.2.7. Consider the systems onePkt and twoPkt defined as:

onePkt— Ifgok.(a!] \b!] N
twoPkt=- I[gok.a!T] I[gok.b!T]

They represent two di_};rent strategies for sending the messages al! b!7 from
| to k. The first system, onePkt, transfers the two messages as one unit (one
packet), whereas the second system, twoPkt, uses a distinct packet for every
message. In a calculus with no network failure, it would be hard to distinguish
between these two systems.

The two configurations are however

Location and Link Failure in a Distributed m-cal culus 13
We also note that

IM>Kk[a 1, |a@k
I > kl[a|-|]I’) |b@k

However the left hand side, ITyc>onePkt I[[kill] can never reduce to a configura-
tion with such barbs. Formally, there is no configuration IT> N such that

M > 1[go k.(a!1 b!7)] Ikil] n *TT> N
where IT> N Lgk and IT»> N/ bk m
Example 2.2.8. Consider the two systems:

nonDetl~ (vk:loc[a]) k[[kill] k[gol.a!l]
nonDet2~- (vb:

14 Adrian Francalanza and Matthew Hennessy

By contrast, the next two server implementations introduce a degree of dis-
tribution, by processing the request across a number of locations:

|
I[req?(x, y).go ki.datalx,y]
kil[data?(x,y).go Ly!1f(x) 1

go ky.data!]x, sync
| @req?(x, y).(vsync:ch) § go ka, k;. data!x, sync
srv2Rt~- (vdata:ch) . synch?(x)y!1x
go L.yl f(x)
ki data?(x,y). g0 ko Ly1 (%)

Both servers, srvDis and srv2Rt, distributed the internal database remotely at
location ky. Server srvDis thus receives a client request at |, migrates directly
to ky and queries the database; the database then returns to | and reports back
the processed value, f(x), on the requested return channel y. The other server,
srv2Rt, accepts a client request at I, but attempts to access the unique remote
database located at k; through two di erent routes, one directly from | to k; and
the other indirectly from | through the intermediate node k, and then finally to
k1 where the database resides; similarly, the internal database of srv2Rt returns
the answer f(x) on y along these two routes. In a scenario where no fault occurs
to k; and ky, srv2Rt will receive two answers back at . To solve this, the orig-
inal requests are sent with a scoped return channel sync; a process waiting for
answers on this channel at location | chooses non-deterministically between any
two answers received and relays the answer on the original channel y.

We leave the reader to check that the local server, server and remote imple-
mentations, srvDis and srv2Rt, are di_Jerent, that is:

srvDis= (vdata:ch)

It = server= srvDis and IT = servery= Srv2Rt
because of their behaviour in the context
Cz[/] = [1]‘kll[klll]l

However, it turns out that the two remote server implementations are reduction
barbed congruent in DrrLoc:

I = srvDis = srv2Rt

Unfortunately, Definition 2.2.6 makes it hard to prove this statement because it
uses quantification over all possible contexts. |

Due to the problems associated with Definition 2.2.6, we need an inductive
definition of behavioural equivalence that is easier to prove but still consistent
with reduction barbed congruence. In the remainder of this section we define
a bisimulation equivalence which allows us to relate 76 Td (Due)1$28xt878 0 Td (t0)"

Location and Link Failure in a Distributed m-cal culus

Table 6. Operational Rules(1) for DxLoc

15

I
Assuming IT+ |:alive

16 Adrian Francalanza and Matthew Hennessy
Table 7. Operational Rules(2) for DrrLoc

(Il-open)

Tl:al{V)
H+n:Tl>Nu(u)ua1‘r [V N/
(nT, T0)lal (V) haznxV
HD(Vn:T)Nuuuuulu [V N’
(I-weak)
(TD):a?(V)
H+n:T>Nuu;ur [V N’
(n:T, AD)l:a2(V) ha#nxV
HDNuuuuur H/DN/
(I-par-ctxt)

(I-rest)
IT+n:T>N ;r# IV +n:Us> N’
IT>(vn:T)N ‘fﬂ I[V> (vn:U)N’

H>N;r# 1T > N’
nefm) e NM ‘r# 1> N’ M "
> MN ‘rﬂ "> MN’

M

(I-par-comm)
T:al{V) T)l:a?2(V
HDN)E)nf)llal:i 1_[’1>N’ H>M151nf)ua1(r) HNDM/
I=NM., ITs (i TN M)

[.
[T>MN ., IT>(A:T) (M’ N)

L r |

rules inherited from distributed n-calculi such as Dr; note, however, that actions
can only occur at live locations. The rules in Table 7 are also adaptations of the
standard rules for actions-in-context from [9] together with the rule (I-par-comm),
for local communication. Here, we highlight the rule (r-weak), dealing with the
learning of the existence of new location names and their state as a result of
an input from the context; this rule was adopted from a variant used already in
[9, 8]. Note also the general form of (I-rest), where the type of n may change
from T to U; this phenomena is inherited directly from (r-ctxt-rest) of Table 4 in
the reduction semantics and explained in Example 2.2.9.

The rules dealing with the new constructs of DrrLoc, are contained in Table 8,
most of which are inherited from the reduction semantics. The only new one is
(I-halt), where the action kill : | represents a failure induced by an observer. This
IS in contrast with the rule (I-kill), where | is Kkilled by the system itself and the
associated action is .

Location and Link Failure in a Distributed r-calculus 17
Table 8. Operational Rules(3) for DxLoc

I
Assuming IT+ | : alive
(I-kill) (I-halt)

i, (@ D=10] m-N." (1, s N

(I-new)

s I[(vn:T)P] ‘rT IT> (vn:T)I[P]

(r-go) (r-ngo)
- n k- - Mrk |
[T~ I[go k.P] i IT> K[P] [T I[go k.P] " IT> kO]
(r-ping)

- m k-l
IT>Ifping k.P Q] o IT=I[P]

(r-nping)
I Iping k.P Q] ,rT > 1[Q]

II¥k—I

The first sanity check we prove about our Its is the property that in an action

M
T
were u is an external action, the residual network I’ is completely determined
by the network IT and the external action pu.

IT>N IV >N’

Definition 2.3.2 (Action residuals). The partial function after from tuples of

network representations IT and external actions u to network representation is
defined as:

| ITafter (fi: T)I : allV isdefinedasIT+fi: T

| ITafter (fi: T)I : a?(V) is defined as [T+ : T
| IT after kill : | is defined as IT, |

18 Adrian Francalanza and Matthew Hennessy

The second sanity check is that the actions are indeed well-defined relations
over configurations.

Proposition 2.3.4. The Its defined in Definition 2.3.1 forms a binary relation

between well-defined configurations. That is, if IT> N ,r” I”>N’and IT+ N
then IT" + N’.

Proof. By induction on the derivation of the action IT> N , " I N’. Note
that if is an external action then Proposition 2.3.3 gives the precise form of IT".
Moreover if it is the internal action 7 then it is possible to prove that IT’ either
coincides with IT or takes the form IT, | for some | live in IT. O

Using the Its of actions we can now define, in the standard manner, weak
bisimulation equivalence over configurations. Our definition uses the standard

. . H u M
notation for weak actions, namely = denotes= ., = ,and= denotes

[«

| A|> * |f/J =T
M]
| (= otherwise.

Definition 2.3.5 (Weak bisimulation equivalence). This is denoted as ., and is
defined to be the largest typed relation over configurations such that if I IT

Location and Link Failure in a Distributed m-cal culus 19

It is clear that R is a typed relation; we only have to show that R it is a bisimula-
tion. The proof proceeds by induction on the structure of [T> M and IT>N. O

Example 2.3.7. We recall that in Example 2.2.8, we claimed that IT, > nonDet1
was equivalent to IT, > nonDet2. We here show that they are bisimilar, by giving

20 Adrian Francalanza and Matthew Hennessy
Table 9. Syntax of DxF

Types

. S,Ri=a d
T, U,W :==ch \ 10C[S’ C] C,D = \Ul’ cee U.}
Processes

PQ:=... ,\breakl

Systems
N,M:=...

describe the live connections to other locations. Thus, in DxF, a location type is
denoted as loc[S, C], where the first element S is inherited from Section 2, and
the second element C is a set of locations (A4, ..., lg}. If a new k location is de-
clared at this type, then it is intended to be linked in the underlying network with
each of the locations l;, although there will be complications; see Example 3.2.1.
The only other modificiation to the syntax is the addition of the process construct
break I, which breaks a live connection between the location hosting the process
and location I. Contextual equivalences then take into account the e_Ject of link
faults on system behaviour, in the same manner as the presence of kill takes node
faults into account.

The final major extension in the DxF syntax is in the network representa-
tion; in a setting where not every node is

Location and Link Failure in a Distributed m-cal culus 21

| D € loc(V) represents the set of dead locations, as before.
| LA <10c(NV) — loc(N) represents the set of connections between locations m

As with DrLoc network representations, we use the notation Ay, Ay and
A, to refer to the individual components of A. We will also have various nota-
tion for checking properties of DzF network representations, and updating them;
these will be explained informally, with the formal definitions relegated to the
Appendix.

3.2 Reduction Semantics of DrF

The definition of well-formed configurations, Definition 2.2.1 generalises in a
straightforward manner: we say A > M is a well-formed configuration if every
free name occuring in M is also in Ax. Then the judgements of the reduction
semantics take the form

A>M o A >M

where A > M and A’ » M’ are well-formed configurations. This is defined as
the least relation which satisfies the rules in Table 2 and Table 4 (substituting
A for IT) , all inherited from the reduction rules for DrLoc, together with the
new reduction rules of Table 10, which we now explain. We note that, as usual,
all of these rules require that the location where the activity is to occur is alive,
A | alive.

The most subtle but important changes to the network reductions rules are
those concerning the constructs go and ping. Even though the general intuition
remains the same to that of= 2.2, the former notion of k being accessible from |,
used by rules such as (r-go) and (r-nping), and still denoted as A+ k 1, changes;
for k to be accessible from I, two conditions must hold, namely that k is alive

and that the link betwebRIEHB% is AME-20WEN. IFESYBFIAREBUG conditions

do not hold, then k is deemed to be inaccessible from the point of view

the(still) Tl

22 Adrian Francalanza and Matthew Hennessy
Table 10. New Network Reduction Rules for DrxF

I
Assuming At |: alive

(r-go) (r-ngo)

A k-l Ark I
Av>lfgokP]., A=K[P] Av>lgokP], A>K[O]
[[

(r-ping)

. A k-l
A l[pingk.P Q] i A-I[P]

(r-nping)
AxIfpingkP Q1] i AxI1[Q]

A¥Kk—I

(r-newc)

A>I[(vc:ch)PT, A»(vc:ch)I[P]

(r-newl)

oc[S,D] = inst(oc][S,C],1,A)
A T[vK:1oc[S,CPT,, A> (vk:Loc[S, D])I[PI

(r-kill) (r-brk)
A-1dT, (A,)>10] A»I[breakkl, (A, I K)>I[0]

A <k

Table 11. New Structural Rules for DrxF
1

(s-flip-1) (vn:T)(ym:UN — (vm:U)(vn:T)N n ¢ fn(v)
(s-flip-2) (vn:T)(vm:U)N — (vm : U, n)(vn: T+m)N ne fn(U)

of which is relegated to the Appendix; intuitivel |3d& @f(in&2® 16() T 3 lip6049.30

Location and Link Failure in a Distributed m-cal culus 23

rules in Table 5, defining the structural equivalence. The revision is detailed in
Table 11; the rule (s-flip) is replaced by the two rules (s-flip-1) and (s-flip-2). This
enables us to flip two successively scoped locations even if the first is used in the
type of the second, that is there is a link between the two scoped locations.

Example 3.2.1. Consider the system:
launchNewLoc ~—- I3|[a!]I1]l . |3|[a?(X).(Vk . loc[a,J)(, |2, |4, |5}])P]|

running on a network A consisting of four locations I..Is, all of which are alive
except 4, with I, connected to I, and I3, and I3 connected to 14. Diagrammatically
this is easily represented as:

Y
O
A
Y

IO:
2 |

®
=0

|1 |5

where, open nodes () represent live locations and closed ones (|) dead locations;
we systematically omit reflexive links in these network diagrams. Formally de-
scribing A is more tedious:
| AN is‘a9 Il’ IZ? |3? I4a IB‘
| Apisde
| the link set A, is given by
JLEWS ERO [PV PR | VSN RO | VIR R | 38 PO
LW P | P OO | EY VIR | PO PR | EY PR | g 2

Clearly there is considerable redundancy in this representation of link sets; A,
can be more reasonably represented as:

A =01 bl Izl lals 1)
where | k denotes the pair of pairs I,k , 1k, together with the reflexive pairs
1,1, Tk, k ; in such cases, a reflexive bi-direcitional link I | would be used

for completely disconnected nodes such as Is. When we apply the reduction
semantics to the configuration A » launchNewLoc, the rule (r-comm) is used first
to allow the communication of the value I; along a, and then (r-newl) can be
used to launch the declaration of k to the system level. However, the evaluation
of inst(l,, loc[a, 11, I2, I4, I§}], A) at launching turns out to be loc[a, 11, 2, Ig}]
because:

24 Adrian Francalanza and Matthew Hennessy

| the location from where the k is launched, that is I3, is automatically con-
nected to k.

| 1y and I, are reachable from the location where the new location k is launched,
that is A + I, 1, e~ I3; |5 is directly accessible from I3 while |y is reachable
indirectly through I,

| 14 and I5 are not reachable from |,; 1, is dead and thus it is not accessible from
any other node; |5 on the other hand, is completely disconnected.

So the resulting configuration is:
A> (vk:loc[a, A1, ,a']) I[P

The network A of course does not change, but if we focus on the system I, [P.{1/4)],
we see that it is running on the internal network represented by:

O O > o
I3

O<+——O

This distinction between the internal networks used by di_,‘i_erent subsystems
has already occurred in the semantics of DrrLoc; see the discussion of Exam-
ple 2.2.2. Nevertheless, we warn to the reader that there will be more serious
consequences for DrrF, due to the complex nature of reachability that comes into

play.

Reduction barbed congruence

The definition of Reduction barbed congruence, Definition 2.2.6, originally de-
veloped for DzLoc configurations, can be adapted to apply also to DzF. The
formal definition is delayed to Section 4, but let us use the the same notation,

A=M=N (7)

to indicate that the systems M and N are equivalent relative to the network A; the
discussion in the section only relies on an intuitive understanding of this concept.

Let us now reconsider the three implementations of a client server discussed
in Example 2.2.9, but this time running on a network with explicit links. For con-

Location and Link Failure in a Distributed m-cal culus 25

venience, in this and later examples, we systematically omit channel names from
network representations. Moreover, we abbreviate the location type loc[a, C] to
loc[C] when the status of location is understood to be alive.

Example 3.2.2. Let A represent the following network:

O
ko

o = > O
I K1

Formally A is determined by letting Ay be -1, k1, kg}, A, bei- and A be -
ki, I ko, ki Kg)

The distributed server implementations, srvDis and srv2Rt, presented earlier
in Example 2.2.9, are no longer reduction barbed congruent relative to A, as in
this extended setting, the behaviour of systems is also examined in the context
of faulty links. It is su jcient to consider the possible barbs in the context of a
client such as I|[req!]|,Tet] and a fault inducing context:

Cz = [1] . ||[break kl]l

which breaks the link | k;. Stated otherwise, if the link | k; breaks, srv2Rt
will still be able to operate normally and barb on ret@l; srvDis, on the other
hand, may reach a state where it blocks since migrating back and forth from |
to k; becomes prohibited and as a result, it would not be able to barb ret@lI.
However consider the alternative remote client srvMtr, defined as:

go k. datallx, sync
| @req?(x, y).(vsync) § monitor k; go ko, k;.datalx, sync,
.sync?(x).y!1x
1#d9o19 28P9 TL (

go L.y"f(x)
)
ki data?(x, y). _monitor I go kz, Ly'1f(x).

srvMtr — (v data)

26 Adrian Francalanza and Matthew Hennessy
Example 3.2.3. Consider the following three networks,

| k

A; = A +k:loc[d, §}] = O ~o
, | k

A= A +k:loc[di'] = o o
, | k

A; = A +k:loc[ai] = o o

These are the e_.‘i_ective networks for the system Ifal1k] in the three configura-
tions A, > N;j, where N; are defined by

N1— (vk:loc[d,$']) I[a'1k]
Ny— (vk : Toc[dT'])

Location and Link Failure in a Distributed m-cal culus 27

I[allks, ks .P] is e‘,‘i_ectively running on the following internal network:

ko

(@)
| 5 /

(@)

ks

(8)

Let us now see to what knowledge of this internal network can be gained by an
observer O at site |, such as IJa?(x, y).O(x, y)]. Note, that prior to any interaction,
O is running on the network A, and thus, is only aware of the unique location |.
By inputting along a, it can gain knowledge of the two names k; and k», thereby
evolving to IJO(ks, k3)]. Yet, even though it is in possession of these two names,
it cannot discover the link between them, due to the fact that it is not aware of
the local name k1 ; in other words, it cannot discover the full extent of the internal
network (8) above. C

This means that, there is now a di_ference between the actual network being
used by the system,

28

Adrian Francalanza and

Location and Link

30 Adrian Francalanza and Matthew Hennessy
L, denoted and defined as:

Lovdy,. . lgE

Finally, if C = ky, ..., kg} IS a set of locations representing connections, and
| is a location such that | ¢ C, then| C denotes the component defined as:

| CE kI, Ik, Tk ke GIa<lLly)
where locations in C are symmetrically related to I, while | is also related to itself.
In the resultant component | C, all the locations in C in the component| C
are connected as a star formation to | and as a result, all locations are reachable
from one another in at most two accesses by going through the central node |.
Using previous shorthand notation, we could have alternatively defined | C as:

I CEA Kk ke Q)

Lemma 3.3.4 (Subtracting a Component from a Linkset). For any linkset £
and component K such that 7<M£, the set £/%K is also a linkset.

: S
Proof. Immediate from the fact that £ can be exgressed as N % where K
must be equal to one ;. Thus, if K = K, the set ?ﬂzl 9, which translates to
L /K, would still be a linkset. O

. . L . .
We now revert our discussion back to e_Jective network representation, and
show how the definition of components facilitates the procedure for extending
networks.

Definition 3.3.5 (Augmenting effective networks). Let n be fresh to the net-
work “and, C be a set of locations such that CM dom(‘o). Then we define the
operation “+n:T as:

| “+n:ch def 1%y A<,

Location and Link Failure in a Distributed m-cal culus 31

In the above definition, extending a network with a fresh channel is trivial;
adding a fresh dead node is similarly simple, due to the fact that “does not repre-
sent dead nodes or links to dead nodes explicitly. The only subcase that deserves
some explanation Is that of adding fresh live nodes. A fresh live location is added
to either "o or "y depend’ng on its links. If it is not linked to any observable
location, C dom(%) =1, then the new fresh location is not reachable from
the context and is therefore added to “w. If, on the other hand, it is linked to an
observable location, C dom(0) #i", then it becomes observable as well. There
Is also the case where the fresh Iocatlon is linked to both observable pnd hidden
locations, still represented above by the case where C dom(0) #1"; Insuch a
case, the fresh location, together with any components in the hidden statev linked
to it, that is “ «~~C, become observable and thus transfered from “4 to %. The
following example elucidates this operation for extending e_Jective networks.

. LI N i : :
Example 3.3.6. Consider the e_Jective network °, representing six locations
|,k1,...,k5:

“ = -l‘!l’ kla k2a k3’ k4a ki}a ‘1 1}7 \kl k2a k2 k3’ k4 k‘}

Accroding to Definition 3.3.2, | is the only observable location by the context;
locations k; 4 are alive but not reachable from any observable location while the
remaining location, ks, is dead since it_s not in dom(%, a<H). Moreover, the
linkset representing the hidden state, “, can be partitioned into two compo-
nents, K1 = ki kp,ka kgl and K> = ks ke} whereas the linkset rep-
resenting the observable state, o, can only be partitioned into one component,
itself. -

The operation,~+ky : 1oc[a,-4}] would make the fresh location, ko, observable
in the resultant e_Jective network since it is linked to, thus reachable f;om the
observable location I. On the other hand, the operation “+ kg : Loc[a;]would
make ko hidden since it is a completely disconnected node, just like k4 The
operation “+Kko:1loc[a,-ks}] would still make ko hidden in the resultant e_Jective
network, since it is only link to the hiddgn node k;. Finally, the operation *+
ko : loc[a,.1, ke}] intersects with b % and “y. This means that ko itself
becomes observable, but as a side e_Ject, the components reachable through it,
that is %y e~ I, k) = K, becomes observable as well. Thus, according to
Definition 3.3.5, the updated network translates to:

S+VI‘<0:loc[a,\1{ﬂk;}] = < - <
T vake), ok k) oo e ke)), /(oK)
T 2va<ke), om<ke Lk kg) ek, /K
1 vakel, 1 Koko ki ki ko,ka kg, ke ke

32 Adrian Francalanza and Matthew Hennessy
Table 12. Network Operational Rules(2) for DxF
I

<

Assuming “+ | : alive

(1-kill) (I-brk)
' T , » T » Ik
“> 1[kill] i (% DeI[o] > |[break K] " , (I kK)=1[0] :
(I-halt) (I-disc)
= il < > ops | o alive < < > s ek
‘»N,,"r"' (* D)oN >N,'r"°k , (I KN
(I-go) (I-ngo)
- A k-l - Ark -
A>Igok.P] " A K[P] A>Igok.P] i A > K[O]
(I-ping)
- A k-l
A > |[ping k.P Q]I,r A I[P]
(I-nping)
- T A¥k—I
A > |[ping k.P Q]I,r A I1[Q]
(I-newc)

A>1[(vc:ch)P]," A>(vcich)I[P]

(I-newl)

T oc[S,D] = inst(oc][S,C],1,A)
A>I[(vk:loc[s,C))P] " A (vk:1oc[s,D]) I[P]

Let us now return to the defintion of our Its for DzF. The transitions between
e_Jective configurations (9) are determined by the rules and axioms already given
in Table 6 from Section 2.3, together with the new rules in Table 12 and Table 13.
Most of the rules in Table 12 are inherited directly from their counterpart reduc-
tion rules in Table 10. The new rule is (I-disc) which introduces the new label
| «» k and models the breaking of a link from the observing context, in the same
fashion as (I-fail) in Table 8 models external location killing. Both of these rules
are

Location and Link Failure in a Distributed m-cal culus
Table 13. Contextual Operational Rules(3) for DaF

33

1
(I-open)
Tl g
+n TDNU(IJ)JAaA‘r "> N’

(n:u, nr)laqV) >
(Vn T)Nuuuuur ‘IDN'

lLazn<V,U=T/Zp

{ weak)

fnl:a?2(V) 2
+n TPNAE“)uaA(r) "> N’

N (nT,TNEa(V) %
> u“uuur /I>N/

Laznx=V, (+ TT) ops T

(I- rest)
+n T1>N;r Y4+n:Us N’
(Vn T)N; “5 (vn:U)N’

n ¢ fn(u)

(I-rest-typ)
(TDl:al{V) 2 ~

+k T>Nuu;ur (nU)+k:Ul>N’ | K~ (TS
N W) 3 - ~ aFKxin
> (vk:T)N ,f,,’,f",‘r A (vkUN?

(I-par- ctxt)
“> N ‘I‘ > > N’
V‘I>N|\/|;I, Y:’>N’\|\/|Z M
S M\N ;I, A I\/I\N’
(I-par-comm)
o (A)> N U(lnf)lllal_:fv> > N’ o (A)> M ‘S‘H}")‘I‘a‘(rv) >, M’

““NM, " >(vn T)(N” M)

>|v||\|,r *> (v T) (MY NY)

, [

tleties are required to deal with the interaction between scoped location names
and their occurrence in location types. For instance, the rule (l-open) filters the
type of scope extruded logations by,removing links to locations that are already
dead and that will not a_Ject the e Jective network “ this is done through the
ogeratlon T/ “p defined in the Appendix. A side condltlon Is added to (I-weak),
(“+1:T) + s T, limiting the types of imported fresh locations to only contain

34 Adrian Francalanza and Matthew Hennessy

locations which are externally accessible, since intuitively, the context can only
introduce fresh locations linked to locations it can access. The internal commu-
nication rule (I-par-comm) also changes slightly from the one given earlier for
DrLoc; communication is defined in terms of the system view& () rather than
the observer view dictated by “ The intuition for this alteration is that internal
communication can still occur, even at locations that the observer cannot access,
thus we denote the ability_to output and input of systems with respect to the
maximal observer view (). Finally, a completely new rule is (I-rest-typ), which
restricts the links exported in location types if one endpoint of the link is still
scoped. The utility of this rule is illustrated further in the following example.
The rules (I-rest) and (I-par-ctxt) remain unchanged for DrrLoc.

Example 3.3.7. Let us revisit E ple 3.3.1 to see how the e_,‘i_ect of the ob-
server O on My, running on the e_Fective network “ having only one location |
which is alive, that is {A,). This e_Fectively means calculating the result of M,
performing an output on a at .

It is easy to see that an application of (l-out), followed by two applications of
(I-open) gives

Tk g e MY ,r“ Tk Fkoike) + ks ik kgt > I[PT (10)

where M{ is (vka : k) (vks : ki, kgh)l[[allkz, ks .P] and « is the action (k :
Ka), ks iK1, kgl 1 allko, ks . Note that (I-rest) can not be applied to this judge-
ment, since ky occurs free in the action . However (10) can be re-arranged to
read

N a i
RaSEN (L VIR kit + Kgikg) + ki1, ke, kg) > I[P]
moving the addition of location k; in the reduct to the outmost position. At this
point, (I-rest-typ) can be applied, to give

PN > f
|I>M11ﬂ |+k2_jj+k3
3462 Tf5.98652 0 Td (u7IR57 14.3/R71 10.04 Tf -1 Td 4462 Tf y4 (1)Tj /-2.42.16001 T8.4 z 0 Td (tT

Location and Link Failure in a Distributed m-cal culus 35

and may be represented diagramatically by:

ko
o}
A
| |
[e) |
|
Y
o
ks
where the links of hidden components are denoted with dashed lines. |

With these actions we can now define in the standard manner a bisimulation
equivalence between configurations, which can be used as the basis for contex-
tual reasoning. Let us write

PN
= M sSwrong N

tg mean that there is a (weak) bisimulation between the configurations “> M and
“> N using the current actions. This new framework can be used to establish

»

positive results. For example, for 1k = &, 1, k!, 1 k’m’J , ONe can prove

i = lping k.a!l Q T swrong k[go l.a!1]
by giving the relationg - <) - N N

36 Adrian Francalanza and Matthew Hennessy

Example 3.3.8. Let us consider a slight variation on the system M; used in
Example 3.3.1 and Example 3.3.7:

Mo~ (V k1 :J‘)(V kz :\k;})(v k3 :\k‘})l|[a!1k2, k3 P]I

again running on the simple (extended) network . Note that here

Location and Link Failure in a Distributed m-cal culus 37

In order to obtain a bisimulation equivalence which coincides with reduction
barbed congruence it is necessary to abstract away from

38 Adrian Francalanza and Matthew Hennessy
Table 14. The derived Its for DxF
I

(I-deriv-1) (-deriv-2)
} N 'fﬂ j/D N* fs fn kil 1 e k) N “(‘”‘Tﬂ):':‘a‘!}w N L= Ink(TT3)
BN TeN T RN B |
(I-deriv-3)
I ‘Sn‘i‘ri‘l:‘af?\/) 7N = Ink(TiT7x)
< (TL)la?(V) >, > N

> N huuur

then we do not add anything to either 20 or Yq{ as is the case for T = ch. Based
on this definition of “+n:T, we give the following definition for Ink(n: