Electrical Circuits & Devices (H6098)
Electrical Circuits & Devices
Module H6098
Module details for 2021/22.
15 credits
FHEQ Level 4
Module Outline
This module is an introduction to the fundamentals of electrical engineering.The main aim of this module is to introduce the basic concepts of circuit theory and to develop an in-depth understanding of the behaviour of electrical circuits built of basic components such as resistors, inductors and capacitors. The module provides the students with essential techniques to analyse electrical circuits such as node voltage and loop current methods, Thevenin and Norton equivalent circuits, transient analysis of RL, RC and RLC circuits, phasor techniques for AC steady-state analysis, and many more. The knowledge and insights gained in this module provide a fundament for more advanced modules investigating electrical, electronic and electromechanical systems.
Module Topics
DC circuits: Ohm's law; Kirchhoff's laws, node and mesh analysis; Thvenin's theorem, Norton's theorem, superposition principle. AC circuits: inductance (L) and Capacitance (C); sinusoidal steady-state, phasors. Energy dissipation and storage. Frequency response of R-L, R-C and R-L-C circuits, resonance. Transient response of R-L, R-C and R-L-C circuits. Operational amplifiers: inverting, non-inverting and differential amplifiers; integrators and differentiators; simple filters. Semiconductor devices: diodes, junction transistor as a switch, Boolean algebra, Karnaugh maps, Combinational logic. Simple circuit applications: rectifiers.
AHEP3 Learning Outcomes
SM1p SM2p SM3p SM1m SM2m SM3m EA1p EA2p EA3p EA5m EA6m D3p EP2p EP3p EP2m EP3m
Library
Floyd FT, 2002 Principles of Electric Circuits, Prentice Hall, 5th ed.
Hughes E et al., 2004. Hughes Electrical and Electronic Technology, Prentice-Hall, 9th ed.
Hambley AR, 2004. Electrical Engineering; Principles and Applications, Prentice Hall, 3rd ed.
Module learning outcomes
Demonstrate a knowledge of basic circuit principles
Demonstrate a knowledge of basic circuit design
Design simple circuits to a specification
Build and test circuits in the laboratory
Type | Timing | Weighting |
---|---|---|
Computer Based Exam | Semester 1 Assessment | 70.00% |
Coursework | 30.00% | |
Coursework components. Weighted as shown below. | ||
Log | T1 Week 6 | 20.00% |
Report | T1 Week 11 | 40.00% |
Problem Set | T1 Week 10 | 20.00% |
Problem Set | T1 Week 5 | 20.00% |
Timing
Submission deadlines may vary for different types of assignment/groups of students.
Weighting
Coursework components (if listed) total 100% of the overall coursework weighting value.
Term | Method | Duration | Week pattern |
---|---|---|---|
Autumn Semester | Laboratory | 2 hours | 01010101010 |
Autumn Semester | Workshop | 1 hour | 01111011111 |
Autumn Semester | Lecture | 1 hour | 33333333333 |
How to read the week pattern
The numbers indicate the weeks of the term and how many events take place each week.
Dr Menguc Oner
Assess convenor
/profiles/406352
Please note that the 5XÉçÇøÊÓƵ will use all reasonable endeavours to deliver courses and modules in accordance with the descriptions set out here. However, the 5XÉçÇøÊÓƵ keeps its courses and modules under review with the aim of enhancing quality. Some changes may therefore be made to the form or content of courses or modules shown as part of the normal process of curriculum management.
The 5XÉçÇøÊÓƵ reserves the right to make changes to the contents or methods of delivery of, or to discontinue, merge or combine modules, if such action is reasonably considered necessary by the 5XÉçÇøÊÓƵ. If there are not sufficient student numbers to make a module viable, the 5XÉçÇøÊÓƵ reserves the right to cancel such a module. If the 5XÉçÇøÊÓƵ withdraws or discontinues a module, it will use its reasonable endeavours to provide a suitable alternative module.